
Modeling Adjustments for Bark Beetle Infested Stands

Large Wildland Fires: Social, Political & Ecological Effects University of Montana, Missoula, USA. May 19-23, 2014

Modeling Adjustments for Bark Beetle Infested Stands

Using the default foliar moisture content of 100% as the reference foliar moisture content and multiplying canopy base height by the fractional values in the table below will simulate the associated corrected foliar moisture content values. The formula can be applied if the reference foliar moisture content is less than or greater than 100%.

Corrected Foliar Moisture Content (%)	CBH Correction Factor (assuming 100% reference FMC)	$CBH_{effective} = CBH * \frac{1}{\left(\frac{460 + 26 * FMC_{Green}}{460 + 26 * FMC_{Red}}\right)}$ FMC _{Green} – Reference Foliar Moisture Content (usually 100%) FMC _{Red} – Corrected Foliar Moisture Content
100	1.000	
90	0.915	
80	0.830	
70	0.745	
60	0.660	
50	0.575	
40	0.490	
30	0.405	
20	0.320	
10	0.235]

Using hourly weather observations from a <u>representative</u> weather station the formula below can be used to calculate the Burn Period Index for each hour. By comparing the hourly index values to observed periods of fire spread and identifying a threshold value above which spread was observed, forecast values from the same station can then be used to estimate forecast burn periods. Other influences on fire spread should also be taken into consideration such as instability and shading from smoke and/or clouds.

 $\textit{Burn Period Index} = \frac{\textit{Dry Bulb Temperature}}{\textit{Relative Humidity}} * \textit{Windspeed}$

Links to geospatial data

Region 1 and Region 4 Aerial Detection Survey (ID, MT, ND, NV, SD, UT, WY) http://www.fs.usda.gov/detail/r4/forest-grasslandhealth/?cid=stelprdb5366459 Region 2 Aerial Detection Survey (CO, NE, SD, WY) http://www.fs.usda.gov/detail/r2/forest-grasslandhealth/?cid=fsbdev3_041629 Region 3 Aerial Detection Survey (AZ, NM) http://www.fs.usda.gov/detail/r3/forest-grasslandhealth/insects-diseases/?cid=STELPRDB5228474 Region 5 Aerial Detection Survey (CA) http://www.fs.usda.gov/detail/r5/forest-grasslandhealth/?cid=fsbdev3_046696 Region 6 Aerial Detection Survey (OR, WA) http://www.fs.usda.gov/detail/r6/forest-grasslandhealth/insects-diseases/?cid=stelprd3791643 Forest Health Protection Mapping and Reporting (go to IDS Explorer) http://foresthealth.fs.usda.gov/portal