
A publication of the National Wildfire Coordinating Group

Fire Behavior Field Reference Guide

PMS 437 July 2014

Fire Behavior Field Reference Guide

July 2014

PMS 437

Sponsored for NWCG publication by the NWCG Fire Environment Committee. Prepared and maintained by the Fire Behavior Subcommittee. Questions regarding the content of this product should be directed to the NWCG Fire Behavior Subcommittee, National Interagency Fire Center, 3833 S Development Ave, Boise ID 83705. Questions and comments may also be emailed to <u>BLM_FA_NWCG_Products@blm.gov</u>.

This product is available electronically at: http://www.nwcg.gov Previous editions: 2001. Previous publications were maintained and published through National Advanced Resources Technology Center (NARTC, currently known as the National Advanced Fire and Resource Institute (NAFRI)).

The National Wildfire Coordinating Group (NWCG) has approved the contents of this product for the guidance of its member agencies and is not responsible for the interpretation or use of this information by anyone else.

NWCG's intent is to specifically identify all copyrighted content used in NWCG products. All other NWCG information is in the public domain. Use of public domain information, including copying, is permitted. Use of NWCG information within another document is permitted, if NWCG information is accurately credited to the NWCG. The NWCG logo may not be used except on NWCG authorized information. "National Wildfire Coordinating Group", "NWCG", and the NWCG logo are trademarks of the National Wildfire Coordinating Group.

The use of trade, firm, or corporation names or trademarks in this product is for the information and convenience of the reader and does not constitute an endorsement by the National Wildfire Coordinating Group or its member agencies of any product or service to the exclusion of others that may be suitable.

Preface

The Fire Behavior Field Reference Guide (FBFRG) was developed as a hands-on user tool for field going Fire Behavior Analysts (FBANs), Long Term Fire Analysts (LTANs), and other fire behavior operational personnel. The FBFRG evolved from the S-590 steering committee and was maintained and published through the National Advanced Resources Technology Center (NARTC, currently known as National Advanced Fire and Resource Institute (NAFRI) in Arizona until 2001. The guide was developed by course coordinators, coaches, and field going personnel as a reference tool and look up guide for fire behavior analysts and managers alike. As science and applications continued to increase within the fire behavior curriculum, the FBFRG was developed to help students and trainees retain the user skills needed in the field to successfully conduct fire behavior assessments and was intended to be used in conjunction with the Fireline Handbook Appendix B Fire Behavior, PMS 410-2 (http://www.nwcg.gov/pms/pubs/410-2/appendixB.pdf). The FBFRG was last updated in 1992 and last published in 2001. The reason for discontinuing the guide was primarily lack of funding to maintain, update, publish and distribute the product, which existed as a 6"x 8" bound reference. In the years following the discontinuation of the published guide, the fire behavior user community petitioned the NWCG Fire Behavior Subcommittee to update and re-establish the FBFRG. As a result of these requests the Subcommittee consulted with a private group to officially analyze the needs of the field and document content needed for the reference guide. Once the needs analysis was completed the Subcommittee awarded a contract to Robert (Zeke) Ziel a retired state employee who maintained currency as a FBAN and LTAN to conduct a substantial revision of the reference guide.

Funding for the various stages of this project were provided by NWCG, the USDA Forest Service, RMRS Wildland Fire Management Research Development and Application group located at the National Interagency Fire Center.

Youtube videos will be uploaded periodically to provide additional supporting documentation for information found within this guide. These videos maybe found at: www.youtube.com/user/FireBehaviorSC

Acknowledgements

We would like to thank Robert "Zeke" Ziel for his efforts and contributions in rewriting and revising the reference guide. In addition, current and past members of the Fire Behavior Subcommittee were instrumental in the coordination, and review of the reference materials. Those individuals include:

Don Boursier, Kyle Cannon, Tony Harwood, Dan Jimenez, John Kern, Jason Loomis, Risa Lange-Navarro, Sandra "Punky" Moore, Rick Mowery, Tami Parkinson, Larry Van Bussum, and John Saltenberger.

Introd	uction	8
1 W	eather & Climatology	9
1.1	Fire Weather Observations (http://www.nwccweb.us/content/pdfs/TakingGoodWxOb	s.pdf)9
1.2	Winds	15
1.3	Temperature, Relative Humidity, and Dew Point Tables	21
1.4	Stability	42
1.5	Fire Weather Data	43
1.6	Fire Season Climatology	44
1.7	Reference	51
2 Fu	ıels	52
2.1	SURFACE FUEL MODELS	52
2.2	Canopy Fuel Characteristics	64
2.3	Landscape (Icp) Acquisition, Critique, & Editing (ACE)	66
2.4	References	70
3 Fu	ıel Moisture	71
3.1	Fuel Moisture Sampling	71
3.2	1-hr Moisture Content	73
3.3	Probability of Ignition	75
3.4	10-hr, 100-hr, and 1000-hr Moisture Content	77
3.5	Live Moisture Content	77
3.6	NTFB/FARSITE & STFB/FLAMMAP Fuel Moisture (.FMS) File and Conditioning Period	79
3.7	Predictive Services Resources	81
3.8	US Drought Monitor	82
3.9	Wildland Fire Assessment System (WFAS)	82
3.10	Normalized Difference Vegetation Index (NDVI) Greenness Imagery	84
3.11	References	87
4 Fi	re Danger	88

	4.1	National Fire Danger Rating System (NFDRS)	88
	4.2	References	97
5	Fir	re Behavior	98
	5.1	Assessing Current and Expected Fire Behavior	98
	5.2	Selecting The Assessment Tool	106
	5.3	Fireline Assessment Method (FLAME)	108
	5.4	Surface Fire Behavior Lookup Tables, Nomographs, & Nomograms	112
	5.5	Crown Fire Behavior	131
	5.6	Using BehavePlus	137
	5.7	Fire Behavior Interpretations (Hauling Charts)	139
	5.8	References	140
6	Fir	e Size & Shape	141
	6.1	Estimating Fire Growth, Shape, and Size from Point Source	141
	6.2	Fire Shapes & Length to Width Ratio	141
	6.3	Burn Period	142
	6.4	Surface Fire Area for Point Source Fires, in Acres	144
	6.5	Surface Fire Perimeter for Point Source Fires, in Chains	146
	6.6	Crown Fire Area, in acres	148
	6.7	Crown Fire Perimeter, in miles	149
7	Ma	apping: Scope, Scale & Geography	150
	7.1	Slope & Scale	150
	7.2	GPS Use for GIS Application	151
	7.3	Average Latitude for Each State	152
	7.4	GIS Data	152
	7.5	Google Earth Fire Applications	156
8	CC	CFDRS	159
	8.1	CFFDRS System Overview	159
	8.2	Fire Weather Index (FWI) System	163

8.3	Fire Behavior Prediction (FBP) System	172
8.4	FWI & FBP Calculations Worksheet	192

Lists of illustrations or tables, if included, immediately follow the contents, as parts of the content section.

Introduction

The Fire Behavior Field Reference Guide (FBFRG) was developed as a hands-on user tool for field going Fire Behavior Analysts (FBANs) and Long Term Fire Analysts (LTANs) along with various operation personnel. The guide contains helpful references to fuels, weather, fuel models and terrain features that are vital to field going fire managers. Funding was provided to the NWCG Fire Behavior Subcommittee to update the FBFRG with references applicable to today's technology and convert the document into an electronic hyperlinked format for various media devices. The reference material contained within the guide will assist with decision support using various tools and methodologies. As new and improved safety zone research is obtained and available for distribution this guide will be updated to help house that information for the field communities.

It is the intention of the Fire Behavior Subcommittee to update the guide as necessary with the most recent science, and technologies for field use to help improve and assist with decision support, fire line safety and fire behavior interpretation.

1 Weather & Climatology

1.1 Fire Weather Observations (http://www.nwccweb.us/content/pdfs/TakingGoodWxObs.pdf)

1.1.1 Who is responsible for regular weather observations and forecast updates,

Take time to review forecasts and make good fireline observations to ensure effective forecasts and briefings. Each Single Resource (crew, squad, and individual) is responsible for insuring that they "keep informed of fire weather conditions and forecasts" so that they may "base all actions on current and expected behavior of the fire." The process involves obtaining and reviewing latest forecasts, taking observations to validate them through the assignment, reporting what is learned to those who need the information, and requesting forecast updates.

1.1.2 Location & Timing of Fireline Weather Observation

1.1.2.1 When to take observations:

Four times during a 24 hour day stand out as valuable for assessing forecasts and evaluating thresholds associated with fire behavior transitions.

- An early morning observation that represents time and conditions when the minimum temperature and maximum humidity occur.
- A late afternoon observation that represents the time and conditions when the maximum temperature and minimum humidity occur.
- At the times when active fire behavior seems to increase and diminish during the burn period.

Other times, for example hourly throughout the afternoon or when changes occur, may be called for by fireline supervisors or dictated by changing conditions to ensure situational awareness.

1.1.2.2 Where to take observations:

Regardless of whether the fire is a prescribed fire project or a wildfire, the weather observer should strive to pick observation sites that most accurately reflect environmental conditions around the fire's location.

- Decide whether a ridgetop, midslope, or drainage bottom location is most representative.
- If on a slope, the aspect and slope steepness is an important consideration.
- Consider what is a representative fuelbed for the fire.
- Attempt to find a safe site upwind or on the flank of the fire. Generally, well ventilated areas in the shade are desirable locations for the observation.
- Minimize the fire's influence on your observation. Avoid taking observations in the black. Avoid observations affected by gusty indraft breezes and radiant heat from the fireline

1.1.2.3 Note the type of Instruments Used

It's a good idea to remark whether the observations were made with an electronic weather sensor or traditional sling psychrometer. Electronic temperature and humidity sensors should regularly be calibrated against weather instruments of reliable accuracy. Check that the batteries are fresh

1.1.2.4 Communicate and Document the weather observation

The most accurate weather observation is of little use unless it is properly communicated in a timely fashion to those who need it. Make sure that current observations are reported verbally over the radio to insure situational awareness.

- Follow instructions for periodic radio reports to fireline supervisors and/or incident communications unit. Ask for report to be repeated for confirmation to reduce errors.
- Report measurements with trends, such as temperature 75 up 5 degrees from last hour.

Provide written documentation of weather observations to fireline supervisor, situation unit, incident meteorologist, or the local Weather Forecast Office. Retain a copy for your records. Don't assume that

weather observations are automatically being received by the proper users. The weather observer may need to take the initiative to verify that the information is being passed up the line. Forms are available.

1.1.3 Wind Observations and Estimations; Calibrating Forecasts & Predictions

Because windspeed and direction is the most variable weather factor over the duration of an assignment, the observer will be concerned with adjusting and validating forecasted winds as much as measuring current windspeed. It is difficult for a meteorologist to produce localized wind forecasts, especially if the wind is influenced by terrain features. Forecasted winds will frequently need adjustment because they are representing a wind other than mid-flame, such as ridgetop or surface winds. See the definitions in section 1.2. It will be important to communicate with the meteorologist the factors that influence the wind measurements that are provided.

Report observation type or height. Identify sheltering and aspect/slope position for the wind observation. And indicate whether local winds are influencing the observation.

1.1.3.1 Obtain forecast from Incident Meteorologist or Fire Weather Forecaster (Section 1.6.3)

1.1.3.2 Consider possibility of Critical Wind (use worksheet reference in section 1.2.3)

1.1.3.3 Use Worksheet to estimate or validate 20-ft surface windspeed (Section 1.2.3)

If the weather forecast product provides windspeed as "free air or ridgetop" or if winds in the fire area are influenced by local winds, it may be necessary to use the form in section 1.2.3 to estimate the surface/20 ft windspeed.

- ✓ Identify speed and direction of any forecast critical wind.
- ✓ Determine speed and direction of any Local Winds
- ✓ Determine speed and direction of General Winds and whether they will influence the 20-ft wind.
- ✓ Combine factors above into an estimate of local surface (20-ft) windspeed.

1.1.3.4 Estimate or validate Midflame Windspeed (use guide in section 1.2.5)

Eye level windspeed is usually assumed to be the same as mid-flame windspeed. However, as suggested in the Fireline Assessment Method (FLAME) reference, it may be too low for flames in shrub fuels and too high for flames in forest litter. In any case, it may be necessary to make adjustments to forecasted 20 ft winds or observed mid-flame windspeed to make comparisons and validate forecasts.

Observing eye level windspeed in the field:

- ✓ The observer should take care to face directly into the wind and closely observe the wind speed indicator fluctuations. Exposure to sunlight is not a concern during the wind observation.
- ✓ An eye level wind speed measurement requires at least one full minute of sampling and preferably more.
- ✓ When using a Dwyer tube, mentally average the wind speed and note the peak gust during the sampling period.
- ✓ Electronic sensors make wind averaging and gust measurement easy. They are more accurate and are preferred for eye level wind speed observations.
- ✓ Remember: The wind direction is defined as the direction the wind is *coming from*.

1.1.3.5 Estimate Effective Windspeed for slope influence (Use table in section 5.3.5 or 5.4.2)

The influence of slope on fire spread is applied as a slope-equivalent "windspeed". Where slope is significant (generally 20% or more), all the fire behavior assessment tools in section 5 (FLAME, Lookup Tables, Nomograms & Nomographs, and BehavePlus) provide means for estimating "effective windspeed". This adjusted windspeed should be used instead of the mid-flame windspeed estimate in fire behavior predictions.

1. Weather and Climatology (Final June 17, 2014) Page 10 of 192

1.1.3.6 Visual Surface (20ft) Wind Estimate - Modified Beaufort Scale

Table 1.1.3.6-1 - Modified Beaufort Scale

Class	Windspeed	Terminology	Example	Visible Effect
0	Less than 1 mph	Calm		Calm, Smoke rises vertically
1	1 to 3 mph	Very Light Breeze	7	Leaves of quaking aspen in constant motion; small branches sway, tall grasses and weeds sway and bend with wind, wind vane barely moves
2	4 to 7 mph	Light Breeze	-44	Trees of pole size in the open sway gently, Wind felt distinctly on face; leaves rustle; loose scraps of paper move, wind flutters small flag
3	8 to 12 mph	Gentle Breeze		Leaves, small twigs in constant motion; Tops of trees in dense stands sway; light flags extended
4	13 to 18 mph	Moderate Breeze	12	Trees of pole size in the open sway violently; whole trees in dense stands sway noticeably; dust is raised in the road.
5	19 to 24 mph	Fresh Breeze	N.	Branchlets are broken from trees; inconvenience is felt in walking against wind
6	25 to 31 mph	Strong Breeze		Tree damage increases with occasional breaking of exposed tops & branches; progress impeded when walking against wind.
7	32 to 38 mph	Moderate Gale	*	Severe damage to tree tops; very difficult to walk into wind; significant structural damage occurs.
8	39 to 46 mph	Fresh Gale		Surfaced strong Santa Ana; intense stress on all exposed objects, vegetation, buildings; canopy offers virtually no protection
9	47 to 54 mph	Strong Gale	1	Slight structural damage occurs; slate blown from roofs
10	55 to 63 mph	Whole Gale	Sung.	Seldom experienced on land; trees broken; structural damage occurs
11	64 to 72 mph	Storm		Very rarely experienced on land; usually with widespread damage
12	73 mph or more	Hurricane Force		Violence and destruction

^{1.} Weather and Climatology (Final June 17, 2014)Page 11 of 192

1.1.4 Temperature/Humidity/Dew Point Observation

Estimating temperature, relative humidity and dewpoint can provide insight to critical fire behavior thresholds for ignition and crown fire potential. Even without references, 1-hr moisture content can be estimated from relative humidity. RH (in %) can be divided by 5 to approximate the fine dead fuel moisture content

1.1.4.1 Sling Psychrometer Use

The following are instructions for determining wet and dry bulb temperatures using the sling psychrometer. These instructions are based on those from page 259 of the S-290 Instructors Manual. Several additional comments have been added.

- 1. If your sling has been in your pack, you may need to hang it in a tree, in the shade, to let it adjust to the outside air temperature. This may be a good time to take the wind observation.
- 2. Stand in a shaded, open area away from objects that might be struck during whirling. If in open country, use your body shade to shade the psychrometer. If possible, take your weather observations over a fuel bed that is representative of the fuels that the fire is burning in. Stay away from heat sinks.
- 3. Face the wind to avoid influence of body heat on the thermometers.
- 4. Saturate the wick of the wet bulb with clean, mineral free water (distilled if available) at air temp.
- 5. Ventilate the thermometers by whirling at full arm's length. Your arm should be parallel to the ground. Whirl for 1 minute.
- 6. Note the wet bulb temperature. Whirl for another 40 or 50 times and read again. If the wet bulb is lower than the first reading, continue to whirl and read until it will go no lower. Read and record the lowest point. If the wet bulb is not read at the lowest point, the calculated relative humidity will be too high. Calculate dew point each time. If it is changing significantly it may suggest a bad observation.
- 7. Read the dry bulb immediately after the lowest wet bulb reading is obtained.
- 8. Determine the relative humidity from the tables.

Important Tips: Sometimes beginners do not take accurate psychrometer readings because of the following common mistakes:

- Changing psychrometers from one observation to the next. Try and use same one throughout.
- not ventilating the psychrometer long enough to reach equilibrium;
- not getting the wick wet enough, or letting it dry out;
- holding it too close to the body or taking too long to read the thermometers;
- touching the bulb ends with the hands while reading;
- Not facing into the breeze.

1.1.4.2 Adjusting RH for changes in Temperature and Elevation

Under certain circumstances, it may not be possible to estimate relative humidity for a particular elevation. It may also be necessary to make field adjustment to forecasted relative humidity for some time later in the burn period. In both of these cases, given that the air mass is unchanging and fairly neutral, it is possible to use current estimates of dew point and temperature and to make adjustments in both cases:

- Case 1: *Estimate relative humidity for an elevation above or below the observation*; assuming an average lapse rate of approximately 4° F, increase the temperature by 4° F for each 1000 ft drop in elevation or decrease it by 4° F for each 1000 ft increase in elevation. Using the new temperature and the estimated dew point, look up the new relative humidity in the appropriate psychometric table.
- Case 2: *Validate a forecasted relative humidity*; using the estimated dew point and the forecasted temperature, look up the new relative humidity in the appropriate psychometric table.
- 1. Weather and Climatology (Final June 17, 2014) Page 12 of 192

1.1.5 Sky Observations

Synoptic (Large Scale) forecasts and representations of current conditions include reference to the relative stability of the atmosphere in the area. In that vein, there are numerous indicators that can be reviewed and interpreted. Several are referenced in section 1.4.

However, these general atmospheric conditions are influenced by the terrain and other local factors to produce more localized effects. The weather observer can provide important information to meteorologists by reporting the visual cues and the timing of changes throughout the day.

These visual cues are generally associated with a weather observation by recording them in the remarks column so that they get a time stamp. Here are some important examples:

Clouds, Fog, & Precipitation

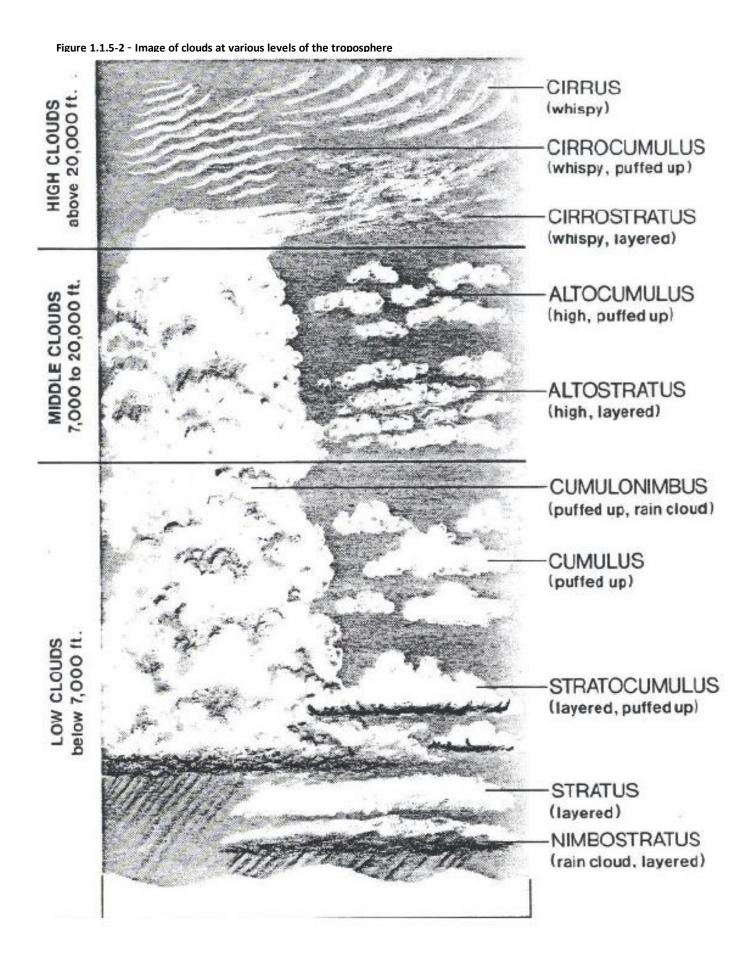
- Cloud Cover, in percent, is an important input for fuel moisture shading.
- Clouds are an important indicator of stability. Flattened (stratus) clouds are an indicator of stable and moist conditions. Cumulus clouds are an indicator of rising air and instability. There are a number of cloud charts available.
- Altocumulus castellanus clouds indicate instability in the middle level that may affect the surface and fire later in the day.
- Altocumulus Lenticular clouds indicate strong winds aloft that may surface later in the day.
- Building cumulus, towering cumulus, or thunderstorms are all indicators of significant instability that is probably already influencing surface winds.
- Showers or virga may be indicators of instability.

Lenticular clouds Lee wave region Roll clouds

Figure 1.1.5-1 Image depicting lenticular clouds

Smoke Column

- Does the smoke continue to rise (indicator of netural or instable conditions) or does it flatten (indicator of inversion at that point)?
- Does the smoke column change direction as it rises (indicator of wind shear or local wind influence)?
- Smoke column developing a pyrocumulus cap cloud (strong instability and impending down drafts)


Haze and poor visibility are indicators of inversions. Is this localized (night-time inversion) or more general and persisting throughout the day. Note if and when the haze or poor visibility abates during the burn period.

Lightning should be reported immediately to alert fireline supervisors to take appropriate precautions and to cue meteorologists to review their lightning detection tools.

Wind Variability

- Sudden wind shifts may be important indicators of breaking inversions or frontal passage.
- Dust clouds radiating away from thunderstorms indicate potentially dangerous downdrafts.
- Dust devils and firewhirls are important indicators of surface instability.
- Note time and rapidity of transitions in diurnal winds

Usually, if a visual cue is worth noting with the weather observation, photography can be very valuable supporting documentation. If a photo is taken, use a photo log or reference the photo number with the location date, time and other identifying comments.

1.2 Winds

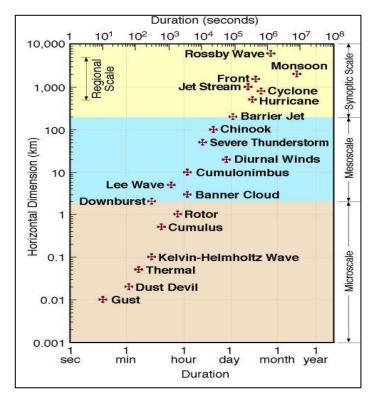
1.2.1 Definitions

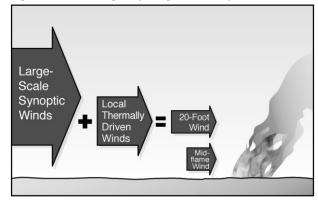
1.2.1.1 General Winds

(Synoptic scale, gradient, free air, ridgetop) are large scale winds produced by broad scale pressure gradients between high- and low-pressure systems. They may be influenced and modified considerably in the lower atmosphere by terrain and vegetative structure.

1.2.1.2 Local winds

(Thermal, convective, drainage) are convective winds caused by local temperature differences generated over a comparatively small area by local terrain and weather. They differ from those which would be appropriate to the general pressure pattern in that they are limited to near surface and are controlled by the strength of the daily solar cycle.



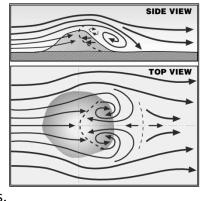

Figure 1.2.1.1-1 - Graph depicting the horizontal dimensions and durations of atmospheric phenomena

- Slope Winds are driven by heat exchange at durations of atmospheric phenomena the slope surface. The can react quickly to insolation on the slope, with upslope breezes starting within a few minutes. The strength of upslope winds is also influenced by the length and steepness of the slope as well as the exposure. Upslope winds generally range from 3-8 mph. The transition from upslope to downslope wind begins soon after the first slopes go into afternoon shadow and cooling of the surface begins. In individual draws and on slopes going into shadow, the transition period consists of (1) dying of the upslope wind, (2) a period of relative calm, and then (3) gentle laminar flow downslope. Downslope winds are very shallow and of a slower speed than upslope winds, [generally 2-5 mph]. The cooled denser air is stable and the downslope flow, therefore, tends to be laminar.
- *Valley Winds* are similar to and linked with slope winds. Their development each day generally lags 1-3 hours behind that of slope winds. Peak speeds can be as much as double those of slope winds, reaching 10-15 mph at their peak.
- Land and Sea Breeze Circulations: During the day, Sea/Lake breeze can reach 10-15 mph at the peak of solar heating in the afternoon. The corresponding land breeze is lighter, perhaps 5-10 mph

1.2.1.3 Surface Winds

Are measured near the earth's surface, at a surface observing station, customarily at some distance (usually 20 feet or 10 meters) above the average vegetative surface and/or a distance equal to at least 10 times the height of any obstruction to minimize the distorting effects of local obstacles and terrain. Generally, 10 meter windspeed is approximately 1.15 times the 20 ft equivalent.

Figure 1.2.1.3-1 Image depicting relationship of various winds

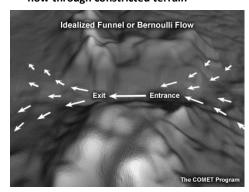


- **1.2.1.4** *Critical Winds* dominate the fire environment and easily override local wind influences. Examples include frontal winds, Foehn winds, thunderstorm winds, whirlwinds, surfacing or low-level jets (reverse wind profiles), and glacier winds.
- **1.2.1.5 Wind Gust** Is a sudden, brief increase in speed of the wind. According to U.S. weather observing practice, gusts are reported when the peak wind speed reaches at least 16 knots and the variation in wind speed between the peaks and lulls is at least 9 knots. The duration of a gust is usually less than 20 seconds. NWCG Definition is based solely on the variation between peaks and lulls, at 11.5 mph.
- **1.2.1.6** *Midflame Windspeed* is the estimated windspeed at a height above the surface fuel equivalent to the height at midflame. This is the wind input required for estimating fire spread using the Rothermel surface fire model. It is generally derived from the Surface (20-ft) Wind based on sheltering from an upper canopy or flame height based on fuel bed depth.
- **1.2.1.7** Eye Level Winds are frequently used to represent midflame windspeeds, though that may represent an overestimate for shallow and sparse fuelbeds that have lower flame heights or an underestimate for shrub and crown fuels with deep fuelbeds
- **1.2.1.8** *Effective Windspeed* is the combined effect of Midflame Wind Speed and the slope equivalent windspeed in the direction of maximum spread (head fire). Effective Wind Speed is used to determine the shape (length-to-width ratio) of a point source fire. See section 5.3.
- 1.2.2 Factors to Consider when Estimating Surface (20ft) Windspeed in Mountain Terrain (From S490)

For the *slopes and ridges of Mountains*, consider:

- Isolated peaks tend to divert general wind flow horizontally and vertically.
 Some <u>acceleration</u> of general winds is likely around the flanks and over the top of isolated mountains peaks with gently inclined slopes. On the lee side of the peak, a turbulent reversal (wind eddies) of general wind flow is possible
- Overall, mesas tend to decelerate general winds because energy must be
 expended to create local reversals of wind flow called "separation eddies"
 that form upwind and downwind of steep sided barriers In the vicinity of
 separation eddies and on top of the mesa, expect 20 ft winds to be
 decelerated below what might be expected for the general area. Be aware
 of the potential for frequent gusts and shifts in wind direction near the eddies.

Figure 1.2.2-1 Image depicting winds moving around an isolated peak


• For *Continuous Ridges*, when airmass is instable, general winds tend to ride over the ridge. Under stable conditions, weak winds can be blocked and a stagnant zone formed below the ridges. In either case, the

atmospheric stability, the strength of the general wind & its angle of incidence, and influence of diurnal winds (which may be opposing) must all be considered on the downwind side of the ridge.

Gaps in Terrain can produce a venturi effect, where winds can be expected to accelerate downwind of the constriction, primarily in the exit region. These gap winds are part of the general wind, because they are based on general winds.

- Low Level Gorges frequently facilitate gap flow when upwind airmass is stable and discourages the wind from rising over terrain. These gap winds are fairly shallow, less than a few thousand feet
- Mountain Passes & Saddles: upper level winds that impact high

Figure 1.2.2-2 Image depicting Bernoulli flow through constricted terrain

terrain tend to flow through the lowest possible spots in a mountain chain rather than climb over it. Local slope and valley winds should be included here.

Valley Influences

Enclosed or Isolated
 Basins have generally
 reduced surface wind
 low on the slopes and
 valley bottoms.
 Inversions may limit
 even the infrequent
 gusts.

Figure 1.2.2-3 Wind flow over an isolated basin

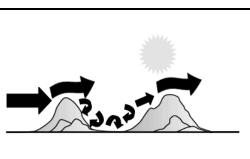
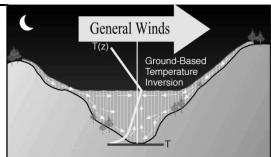



Figure 1.2.2-4 General winds over an isolated basin with nighttime inversion

Elongated Valley Winds

The Local drainage wind component transitions from upslope as the sun hits the upper slopes, then upvalley as the heating becomes widespread to downslope as the sun sets and down valley during the night

The general wind influence on surface winds in these valleys depends on its strength, the angle of incidence to the valley axis, the depth of the valley, its aspect alignment, and the time of day.

- ✓ During the day, general winds that are aligned with the upvalley wind will increase the surface winds. Opposing winds will result in decreased surface winds. And perpendicular general winds will contribute little to the local winds found there.
- ✓ During the night, general winds are most likely to surface when they are strong and aligned parallel to the valley axis.

Figure 1.2.2-5 Local drainage winds in a valley

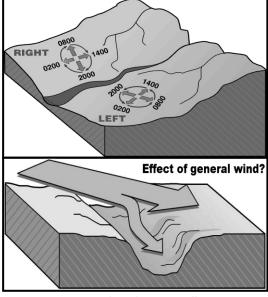


Figure 1.2.2-6 General winds over a valley

- Forked or Bent River Drainages are even more dominated by local winds, though the relationships are even more complex. In the daytime, look for general winds to surface primarily in several exposed stretches, creating a mosaic of stronger and weaker surface winds, depending on alignment. At night, the situation is simplified with predominately local downslope and down valley breezes. Again, beware of strong general winds that are aligned with certain sections.
- Inversions in valleys are very effective at preventing general winds from surfacing on the midslopes or valley floor. Light local slope and valley flow will likely be the dominant winds. Expect to adjust the 20 ft wind downward when an inversion is present. They generally form at night, but may persist through daylight hours if sunlight is diminished by smoke, fog, or cloud cover. Beware that strong general winds at night can dissipate and inversion through turbulent mixing

Special Cases

Beware of factors that produce critical winds, such as Foehn winds, barrier jets, downslope windstorms, and cold air avalanches. These may interact locally with the terrain features discussed above and result in even stronger flows.

1.2.3 Worksheet for Estimating 20-ft Surface Winds

Is there a "*Critical Wind*" that will dominate the fire environment? (I.e. Frontal, Foehn, Glacier, Thunderstorm, Whirlwind, Low Level Jet)

Surface (20-ft) Wind = "Critical Wind"

Dir_____Speed____

NO V

Estimate Local Wind Component

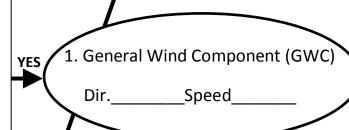
Wind speed guidelines based on slope/aspect and potential heating and cooling:

Upslope	3-8 mph
Downslope	2-5 mph
Up-Valley	10-15 mph
Down-Valley	10 mph or less
Sea Breeze	Day: 10-15 / night: 5-10 mph

1. Local Wind Component (LWC)

Dir.____Speed____

NO **▼**


Are *General Winds* 10 mph or less? (i.e. Observed or predicted ridgetop winds)

Surface (20-ft) Wind = Local Wind Component (LWC)

Estimate General Wind Component

General Wind Component = General Windspeed (mph) x wind reduction factor (near zero to 0.6 based on table below):

Wind Reduction Factor	for General Wind
(Assuming instability	and exposure)
Upper 1/3 of slope or	0.4 to 0.6
Parallel Drainage	0.4 (0 0.0
Middle 1/3 of Slope	0.3 to 0.4
Lower 1/3 of Slope	0.2 to 0.3
Sheltered Areas	Near Zero

Surface (20-ft) Wind = Local Wind Component (LWC) + General Wind Component (GWC)

YES

1.2.4 Adjusting Surface (20ft) Wind to Midflame Windspeed

Table 1.2.4-1 Adjusting surface (20 ft) wind to midflame windspeed

Sheltering Description	Wind Adj. Factor (WAF)	Fuel Models	Bed Depth	Interpretation
	0.5	<u>Grass</u> (gr7, gr8, gr9) <u>Shr</u> (4, sh4, sh5, sh7, sh8, sh9) <u>Slash</u> (13, sb4)	More than 2.7 ft	Openings on level groundOn high ridges where
Unsheltered	0.4	Grass & Grass-Shrub (1, 2, 3, gr2, gr3,gr4, gr5, gr6, gs1, gs2, gs3, gs4) Shrub (5, 6, 7, sh1, sh2, sh3, sh6) Tbr-Undrsty (10, tu2, tu3) Slash (11, 12, sb1, sb2, sb3	0.9 ft to 2.7 ft	trees offer little shelter from wind • Leafless canopy • Surface with average Crown Ratio less than 0.2 (crowns less than 20% of
	0.3	All Timber Litter Fuels (8, 9, tl1 thru tl9) gr1, tu1, tu4, tu5	Less than 0.9 ft	tree height) and Canopy Cover less than 20%
Partially Sheltered	0.3	All Fuel Models	Any	 Patchy Timber Beneath canopy at midslope or higher with wind blowing directly at slope
Full	0.2	Open Canopy	Ally	 Standing timber on flat or gentle slope
Sheltered	0.1	Dense Canopy		 Standing timber near base of mountain with steep slopes

Wind

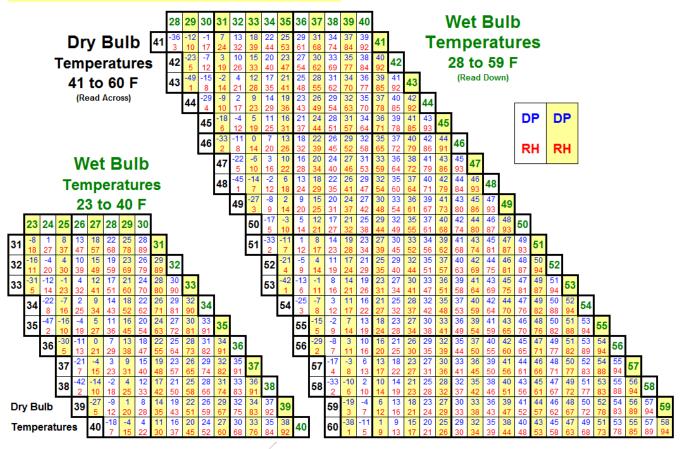
Once general winds are adapted to 20-ft surface winds based on terrain and other local factors, adjustment of 20-ft wind to midflame wind depends on canopy sheltering and surface fuel bed depth. Note how the effect of sheltering varies based on fires position in terrain.

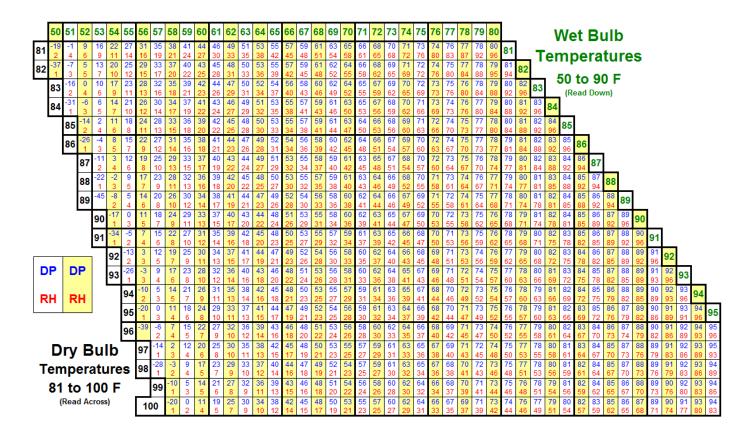
Partially Unsheltered
Sheltered
Sheltered

Unsheltered

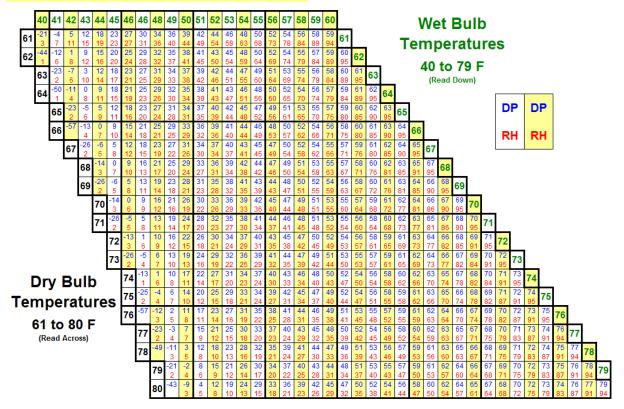
Partially
WAF for
Sheltered
unsheltered fuel
is a function of fuel bed
depth only. WAF for sheltered
fuels is based on a combination of
Canopy Cover, Canopy Height, and
Average Crown Ratio for the site. All
Canopy covers less than 20% and all
Crown Ratios less than 0.2 are
considered unsheltered. As combinations

of these factors increase, WAF becomes partially sheltered, then fully sheltered.

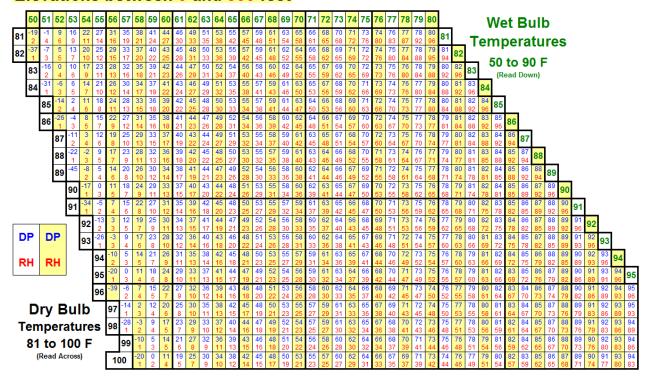

1.2.5 Windspeed Reduction and Adjustment Calculator Table 1.2.5-1 Windspeed reduction and adjustment calculator


1/1/4	3/4/1/4		3/4/1/2	1/3/4	Surface			3/4			1/2			1/4		
4.0	3.0	2.0	1.5	1.33	1.0	0.9	8.0	0.75	0.7	0.6	0.5	0.4	0.3	0.25	0.2	0.1
4	3	2	2	1	1	1	1	1	1	1	1	0	0	0	0	0
8	6	4	3	3	2	2	2	2	1	1	1	1	1	1	0	0
12	9	6	5	4	3	3	2	2	2	2	2	1	1	1	1	0
16	12	8	6	5	4	4	3	3	3	2	2	2	1	1	1	0
20	15	10	8	7	5	5	4	4	4	3	3	2	2	1	1	1
24	18	12	9	8	6	5	5	5	4	4	3	2	2	2	1	1
28	21	14	11	9	7	6	6	5	5	4	4	3	2	2	1	1
32	24	16	12	10	8	7	6	6	6	5	4	3	2	2	2	1
36	27	18	14	12	9	8	7	7	6	5	5	4	3	2	2	1
40	30	20	15	13	10	9	8	8	7	6	5	4	3	3	2	1
44	33	22	17	14	11	10	9	8	8	7	6	4	3	3	2	1
48	36	24	18	16	12	11	10	9	8	7	6	5	4	3	2	1
52	39	26	20	17	13	12	10	10	9	8	7	5	4	3	3	1
56	42	28	21	18	14	13	11	11	10	8	7	6	4	4	3	1
60	45	30	23	20	15	14	12	11	11	9	8	6	5	4	3	2
64	48	32	24	21	16	14	13	12	11	10	8	6	5	4	3	2
68	51	34	26	22	17	15	14	13	12	10	9	7	5	4	3	2
72	54	36	27	23	18	16	14	14	13	11	9	7	5	5	4	2
76	57	38	29	25	19	17	15	14	13	11	10	8	6	5	4	2
80	60	40	30	26	20	18	16	15	14	12	10	8	6	5	4	2
84	63	42	32	27	21	19	17	16	15	13	11	8	6	5	4	2
88	66	44	33	29	22	20	18	17	15	13	11	9	7	6	4	2
92	69	46	35	30	23	21	18	17	16	14	12	9	7	6	5	2
96	72	48	36	31	24	22	19	18	17	14	12	10	7	6	5	2
100	75	50	38	33	25	23	20	19	18	15	13	10	8	6	5	3
112	84	56	42	36	28	25	22	21	20	17	14	11	8	7	6	3
120	90	60	45	39	30	27	24	23	21	18	15	12	9	8	6	3
140	105	70	53	46	35	32	28	26	25	21	18	14	11	9	7	4
160	120	80	60	52	40	36	32	30	28	24	20	16	12	10	8	4
180	135	90	68	59	45	41	36	34	32	27	23	18	14	11	9	5
200	150	100	75	65	50	45	40	38	35	30	25	20	15	13	10	5

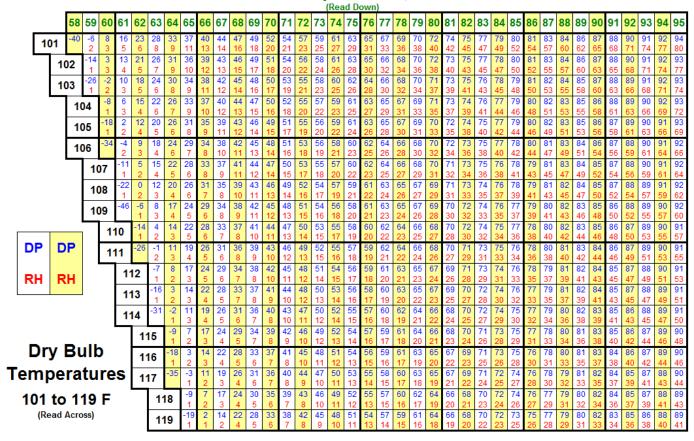
Temperature, Relative Humidity, and Dew Point Tables


Elevations Between 0 and 500 feet (0 and 150 meters)

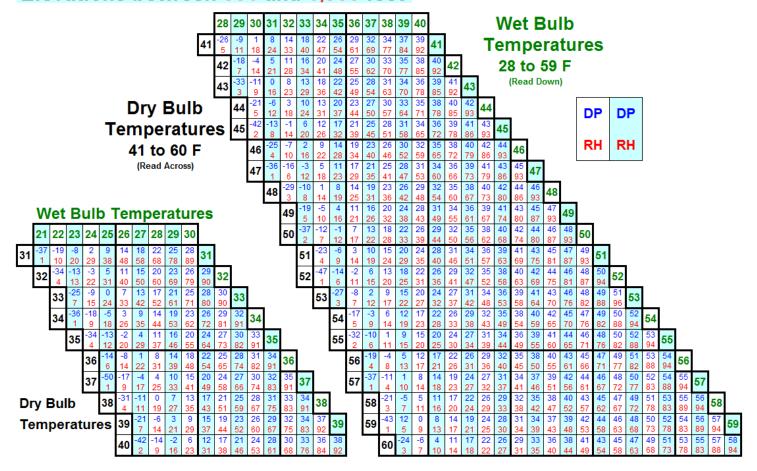
Elevations between 0 and 500 feet



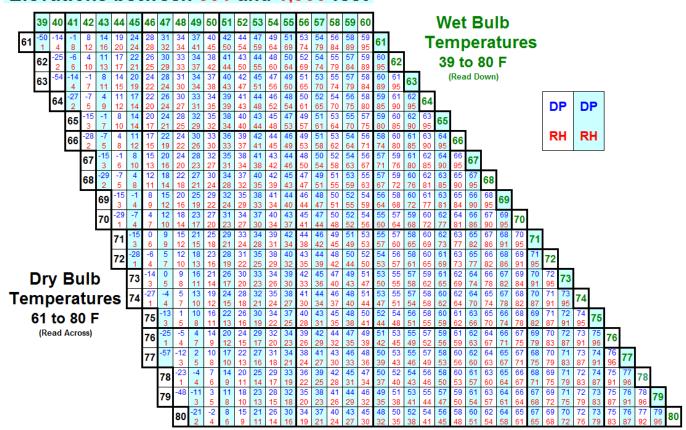
Elevations between 0 and 500 feet



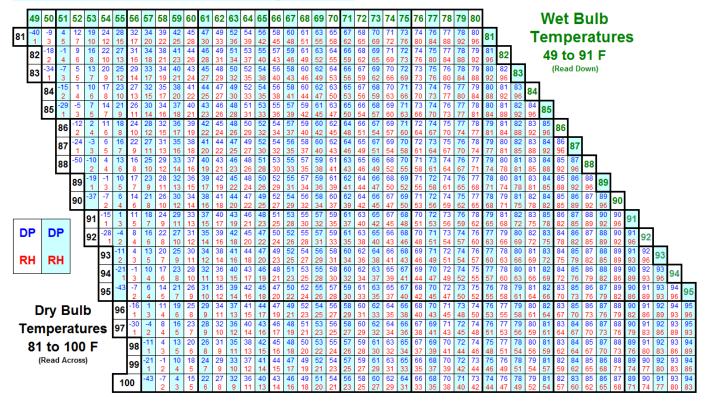
Elevations between 0 and 500 feet


Elevations between 0 and 500 feet

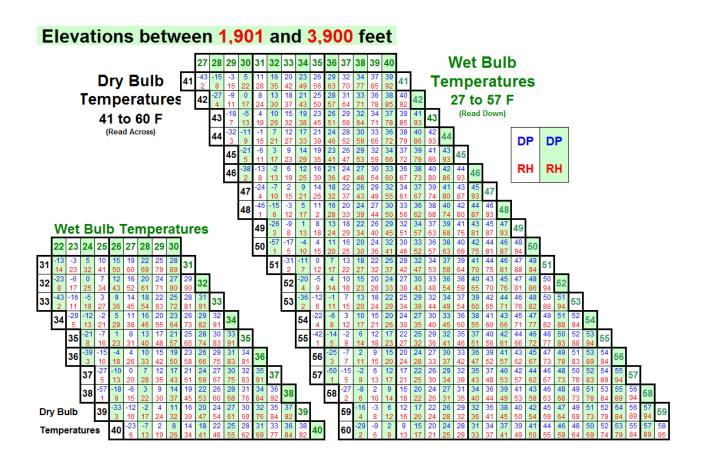
Wet Bulb Temperatures, 58 to 95 F

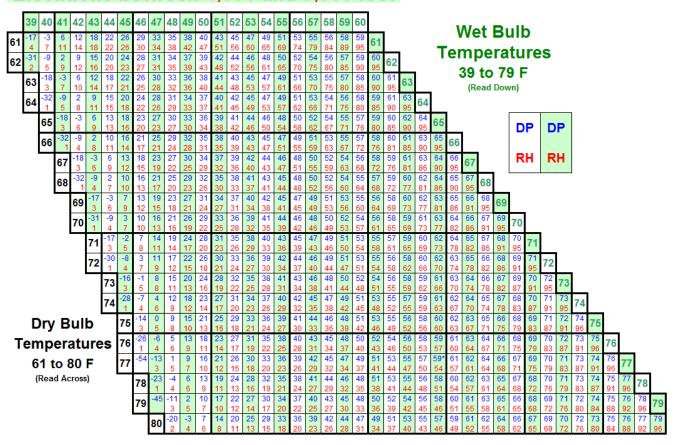


1.3.2 Elevations between 501 and 1900 ft (150 and 575 meters)


Elevations between 501 and 1,900 feet

Elevations between 501 and 1,900 feet

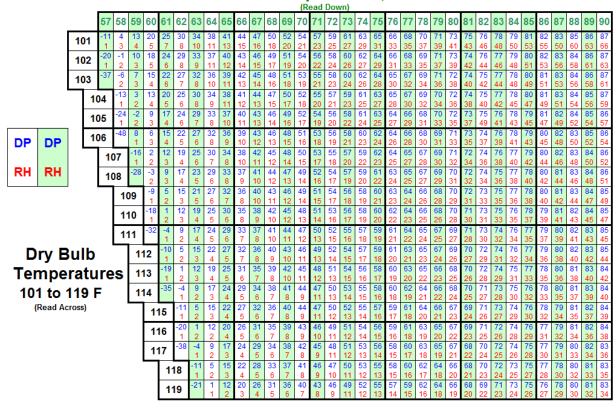

Elevations between 501 and 1,900 feet


Elevations between 501 and 1,900 feet Wet Bulb Temperatures, 58 to 95 F

		_																		(Rea	d D	own)																
		5	58 59	60	6	1	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95
	101	-	15 2 1 3			5	26 7	30 8	35 10	38 12	42 13	45 15	48 17	50 18	53 20	55 22	57 24	60 26	62 28	64 30	65 32	67 34	69 36	71 38	72 40	74 43	76 45	77 47	79 50	80 52	82 55	83 57	84 60	86 63	87 65	89 68	90 71	91 74	92 77	94 80
	102	-	28 -3 1 2	9	1	7	24	29	33	37	41	44	47	50	52	55	57	59	61	63	65	67	69	70	72	74	75	77	78	80	81	83	84	86	87	88	90	91	92	93
	_		- 47	_		5	6 21	8 27	32	36	12 40	14 43	16 46	17 49	19 51	21 54	23 56	25 58	26 60	28 63	30 64	32 66	34 68	36 70	39	73	43 75	45 76	48 78	50 80	53 81	55	58	60 85	63 87	66 88	68	91	74 92	93
	1	103	3 1	3	L	4	6	7	8	10	12	13	15	16	18	20	21	23	25	27	29	31	33	35	37	39	41	43	46	48	50	53	55	58	60	63	66	69	71	74
		104	-19			2	19	25	30	35	38	42	45	48	51	53	55	58	60	62	64	66	68	69	71	73	75	76	78	79	81	82	84	85	86	88	89	90	92	93
	\vdash		1	2	_	3	5	6	8	9	11	12	14	15	17	19	20	22	24 59	26	28	29	31	33	35	37	40	42	44	46	48	51	53	56	58	61	63	66	69	72
	1	108	5 -31	7 -5		8 3	17 4	23 6	29 7	33 8	37 10	41 11	44 13	47 14	50 16	52 18	55 9	57 21	23	61 24	63 26	65 28	67 30	69 32	34	72 36	38	76 40	42	79 44	80 47	82 49	83 51	85 54	86 56	87 59	89 61	90 64	91 66	93 69
		Τ	106	-13		4 2	14	21 5	27 6	32 8	36 9	40	43 12	46 14	49 15	52	54 18	56 20	59 22	61	63 25	65 27	67 29	69 30	70 32	72	74 36	75 38	77 40	79	80 45	82 47	83 49	84 52	86 54	87 56	89 59	90 61	91 64	93 67
		H	407	-2:		_	11	19	25	30	35	38	42	45	48	51	53	56	58	60	62	64	66	68	70	72	73	75	77	78	80	81	83	84	86	87	88	90	91	92
		L	107	1		2	3	4	6	7	8	10	11	13	14	16	17	19	20	22	24	26	27	29	31	33	35	37	39	41	43	45	47	50	52	54	57	59	62	64
		ı	108	-49	9 -	7	7	16 4	23 5	29 6	33 8	37 9	41 10	44 12	47 13	50 15	53 16	55 18	57 19	60 21	62 23	64 24	66 26	68 28	70 30	71 31	73 33	75 35	76 37	78 39	79 41	81 43	82 46	84 48	85 50	87 52	88 55	89 57	91 59	92 62
Dry I	Dulh	-	٦,	09	-1	15	3	13	21	27	32	36	40	43	46	49	52	54	57	59	61	63	65	67	69	71	73	74	76	78	79	81	82	84	85	86	88	89	91	92
Diyi	buib		Ľ	03	Ŧ.	1	2	3	5	6	7	8	10	11	13	14	15	17	18	20	22	23	25	27	28	30	32	34	36	38	40	42	44	46	48	50	53	55	57	60
Tempe	ratur	es	s 1	10	1-2	28	-2 2	10 3	19	25 5	30 6	35 8	39 9	42 10	45 12	48 13	51 15	54 16	56 18	58 19	61 21	63 22	65 24	67 25	69 27	70 29	72 31	74 32	76 34	36	79 38	80 40	82 42	83 44	85 46	86 48	51	89 53	90 55	92 58
-			_	T	111	1	-8	7	16	23	29	33	37	41	44	48	50	53	56	58	60	62	64	66	68	70	72	73	75	77	78	80	81	83	84	86	87	89	90	91
101 to		г			Ш	Ц	1	2	3	5	6	7	8	10	11	12	14	15	17	18	20	21	23	24	26	28	29	31	33	35	37	39	41	43	45	47	49	51	53	56
(Read /	Across)			1	12	2	-17 1	2 2	13	21	27 5	32 7	36 8	40 9	43 10	47 12	50 13	52 14	55 16	57 17	60 19	62 20	64 22	66 23	68 25	70 26	71 28	73 30	75 32	76 33	78 35	80 37	81 39	83 41	84 43	86 45	87 47	88 49	90 51	91 54
					113	Ţ	-32	-3	10	18	25	30	35	39	42	46	49	52	54	57	59	61	63	65	67	69	71	73	74	76	78	79	81	82	84	85	87	88	90	91
				Ľ	10	<u> </u>		1	2	4	5	6	7	8	10	11	12	14	15	16	18	19	21	22	24	25	27	29	30	32	34	36	37	39	41	43	45	47	50	52
DP	DP				ı	11	4	-10 1	6	16 3	23 4	29 5	33 7	38 8	41 9	45 10	48 11	51 13	53 14	56 15	58 17	61 18	63 20	65 21	67 23	69 24	71 26	72 27	74 29	76 31	32	79 34	81 36	82 38	84 40	85 42	86 44	88 46	89 48	91 50
					Г	11	5	-19 1	2	13 3	21 4	27 5	32 6	36 7	40 8	44 10	47 11	50 12	53 13	55 15	58 16	60 17	62 19	64 20	66 22	68 23	70 25	72 26	74 28	75 30	77 31	79 33	80 35	82 36	83 38	85 40	86 42	88 44	89 46	90 48
RH	RH					Т	11	16	-3	10	18	25	30	35	39	43	44	49	52	55	57	59	62	64	66	68	70	71	73	75	77	78	80	81	83	84	86	87	89	90
						ŀ			-10	6	3 16	23	6 29	7 34	8	9 42	10 45	11 48	13 51	14 54	15 56	17 59	18 61	19 63	21 65	22 67	24	25	27	28	30	32	33	35 81	37	39 84	41	42 87	89	46 90
						1	11	17	1	2	3	4	5	6	7	8	10	11	12	13	14	16	17	18	20	21	23	24	26	27	29	30	32	34	36	37	39	41	43	45
						ı	11	18	-20	2	13	21	27	32	37	41	44	47	50	53	56	58	60	63	65	67	69	71	72	74	76	78	79	81	82	84	85	87	88	90
						L	•	_	1	1	2	3	5	6	7	8	9	10	11	12	14	15	16	18	19	20	22	23	25	26	28	29	31	33	34	36	38	39	41	43
								1	19	-40	-4 1	10 2	19 3	25 4	31 5	35 6	40 7	43 8	47 9	50 11	52 12	55 13	58 14	60 15	62 17	64 18	66 19	68 21	70 22	72 24	74 25	76 27	28	79 30	80 31	82 33	84 35	85 36	87 38	88 40

1.3.3 Elevations between 1901 and 3900 ft (575 and 1200 meters)

Elevations between 1,901 and 3,900 feet



Elevations between 1,901 and 3,900 feet

																		_																								
4	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80			V	Vε	et	Вι	alk)		
81	-9	3	12	18	23	27	31	35				46	48	50	53	55	57	58		62	64	65		68	70	71	73	74	76	77	78	80	81	lτ	'ar	nı	20	ra	tu	rΔ	c	
1	3	5	7	9	12	14	16	19	21	24	26	29	32	35	37	40	43	46	49	52	56	59	62	66	69	73	76	80	84	88	92	96		_							3	
82	2	-1	8	15 8	10	26 13	30 15	33 17	37 20	40 22	42 25	45 27	47 30	50 33	52 35	54 38	56 41	58 44	60 47	61 50	63 53	65 56	66 59	68 63	70 66	69	72	74	75 80	84	78 88	79 92	81	82	4	49	to	89	9 F	:		
	31	-7	5	13	19	24	28	32	_		41	44	47	49	51	53	55	57	59	61	63	64	66	68	69	71	72	74	75	76	78		80	82			ead					
83	1	3	5	7	9	11	14	16	18		23	26	28	31	33	36	39	42	44	47	50	53	57	60	63	66	70	73	77	80	84	88	92	96	83	-			,			
\Box	84	-14	1	10	17	22	27	31	34	1	40	43	46	48	50	53	55	57	59	60	62	64	66	67	69	70	72	73	75	76	77	79	80	81	83	84						
Ľ	-	2	4	6	8	10	12	15	17	19	21	24	26	29	31	34	37	39	42	45	48	51	54	57	60	63	67	70	74	77	81	84	88	92	96			ı				
	85	-26	-5	6 5	14	20 a	25	29 13	33	36 18	39	42	45	47 27	50	52	54	56	58	60	62 46	63	65	67 54	68	70 61	/1	73	74	76	77	78	80	81	82	84 96	85					
L	-		-11	2	11	18	23	28	32		20	41	44	47	49	51	53	55	57	59	61	63	65	66	68	69	71	72	74	75	77	78	80	81	82	•••	85		ı			
		86	2	4	6	8	10	12	14			21	23	25	28	30	33	35	38	41	43	46	49	52	55	58	61	64	67	71	74	78	81	85	88	92	96	86	ĺ			
		87	-21	-2	8	15	21	26	30	34		40	43	46	48	50	53	55	57	59	61	62	64	66	67	69	71	72	74	75	76	78	79	81	82	83	84	86	87	1		
		01	1	3	5	7	9	11	13		17	19	22	24	26	29	31	33	36	39	41	44	47	49	52	55	58	61	64	68	71	74	78	81	85	88	92	96		_		
		88	-39		4	13	19	24				39	42	45	47	50	52	54	56	58	60	62	64	65	67	69	70	72	73	75	76	78	79	80	82	83	84	85	87	88		
	-		-	2 -17	0	6	47	10 22	12 27	14 31	16 35	18	20 41	22 44	25 47	27 49	29 51	32 53	56	37 58	39 59	42 61	44	47 65	67	53 68	56	59	72	65 74	68 76	77	75 79	78 80	81	85 83	89	92 85	96			
			89	-17	3	9	7	9	11	13	15	17	19	21	23	25	28	30	32	35	37	40	63 42	45	48	50	53	56	73 59	62	65	68	79	75	78	82	84	89		88 96	89	
				-30	-6	6	14	20	25		34	37	40	43	46	48	51	53	55	57	59	61	63	64	66	68	69	71	72	74	75	77	78	80	81	82	84	85			89	0.0
			90	1	2	4	6	8	10		13	15	17	20	22	24	26	28	31	33	35	38	40	43	45	48	51	54	56	59	62	65	69	72	75	78	82	85	89	92	96	90
				91	-13		11	18				36	39	42	45	47	50	52	54	56	58	60	62	64	66	67	69	71	72	74	75	77	78	79	81	82	83	85	86	87	89	90
				31	2	3	5	7	9	11	12	14	16	18	20	22	25	27	29	31	34	36	38	41	43	46	49	51	54	57	60	63	66	69	72	75	79	82	85	89	93	96
				92	-23	-3 3	8	16	22 8		31	35	38	41	44	47	49	51	54	56	58	60	62	63	65	67	69	70	72	73	75	76	78	79	80	82	83	84	86	87		90
				⊢	-45	_	4	6 13		10 25	11 29	13 33	15 37	17 40	19 43	21 46	48	25 51	53	30 55	32 57	34 59	36 61	39 63	41 65	44 66	68	49 70	52 71	54 73	57 74	60 76	77	66 79	69 80	72 81	83	79 84	8Z 0E	86 07	88	89
				93	-45	2	3	5	7	9	10	12	14	16	18	20	22	24	26	28	30	32	35	37	39	42	44	47	50	52	55	58	60	63	66	69	73	76	79	82	86	89
				_	~4	47	0	10	17	_	28	32	36	39	42	45	47	50	52	54	57	59	61	62	64	66	68	69	71	72	74	76	77	78	80	81	83	84	85	87	88	89
					94	1	3	4	6	8	9	11	13	15	17	19	20	22	24	27	29	31	33	35	38	40	42	45	47	50	53	55	58	61	64	67	70	73	76	79	82	86
					95	-31	-5	6	15		26	30	34	38	41	44	47	59	52	54	56	58	60	62	64	66	67	69	71	72	74	75	77	78	80	81	82	84	85	86	88	89
						'	2	4	5	7	9	10	12	14	16	17	19	21	23	25	27	29	31	34	36	38	40	43	45	48	50	53	56	58	61	64	67	70	73	76	79	83
	Dı	ry	Bu	lb		96	-12	3	12	19	24 8	29	33	37 13	40 14	43 16	46 18	48 20	51	53 24	55 26	57 28	59 30	61 32	63 34	65 36	67 39	68 41	70 43	72 46	73 48	75 51	76 53	78 56	79 59	81 61	82 64	83 67	85 70	86 73	87 76	89 70
		-				_	-23	-2	9	16		27	32	36	39	42	45	48	50	52	55	57	59	61	63	65	66	68	70	71	73	74	76	77	79	80	82	83	84	-	87	88
Te	m	ре	rat	ur	es	97	1	2	4	5	7	8	10	12	13	15	17	19	21	23	24	26	28	30	33	35	37	39	41	44	46	49	51	54	56	59	62	65	67	70	73	76
	81 to 100 F							-8				26	30	34	38	41	44	47	49	52	54	56	58	60	62	64	66	68	69	71	73	74	76	77	79	80	81	83	84	85	87	88
						98	L	2	3	5	6	8	9	11	13	14	16	18	19	21	23	25	27	29	31	33	35	37	40	42	44	47	49	52	54	57	59	62	65	68	71	74
	(Re	ead	Acro	oss)			99	-16		11		24 7	29	33	37	40	43	46	49	51	53 22	56	58	60	62	64	65	67	69	71	72	74	75	77	78	80 55	81	83			87 68	88
						_	-	- 1	-4	4	5 16	22	8 27	10 32	12 35	13 39	15 42	17 45	18 48	20 50	53	24 55	26	28 59	30 61	32 63	34 65	36 67	38 68	40 70	42 72	45 73	47 75	50 76	52 78	79	57 81	60 82	62 84			88
						1	00	-29 1	2	8	5	6	8	9	11	12	14	16	17	19	21	23	24	26	28	30	32	34	36	38	41	43	45	48	50	52	55	57	60	63	65	68
						_		_	_			-		_														-													-	

Elevations between 1,901 and 3,900 feet

Wet Bulb Temperatures, 57 to 90 F

1.3.4 Elevations between 3901 and 6100 ft (1200 and 1860 meters)

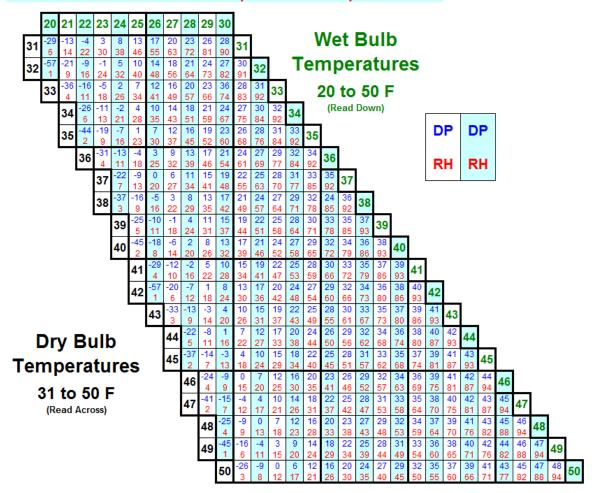
Elevations between 3,901 and 6,100 feet

	27	28 2	9 30	31	32	33 3	35	36	37	38	39	40				v	Vei	F F	Rii	lh										
Dry Bulb 4	-22	-8	1 8	13	17	21 2	24 27	30	32	35	37		41		т						es									
_	0	12 1		31			51 58		71	78	85	93		_							CO									
Temperatures 42	2 -39	-15 - 8 1		10 27		19 2 39 4	23 26 16 52		31 64	34 71	36 78	38 85	40 93	42		2	7 t	0	56	F										
•	43	-25 -		7	13		21 24		30		35	37		41	43		(Rea	ad D	own)										
41 to 60 F	43	5 1	0 16	22			1 47		59	66	72		86	93																
(Read Across)	44	-48 -1	17 -4	4	10	15 1 30 3	19 22	25	28 54	31 60	34 66	36	38 80	40	42 93	44														
DP DP	Ч	-2	29 -10	0	7		36 42 17 20	24	27		32	35	37	39		40														
		45	4 9	15	20	26 3	31 37		49	55	61	67	73	80	86	93	45													
		4	6 -19	-5	3		14 18		25	28	31	34	36	38	40	42	44	16												
RH RH		⊢	0	11	17		27 33 12 16		44 24	50 27	56	62	68	74 37	80	$\overline{}$	93		_											
		4	7 32	-12 8	-1 13		12 16 23 29		40	45	30 51	32 57	35 62	68	39 74		43 4 87 9	15	17											
		_	48	20	-6		9 14		22		28	31	34	36	38	40		14	46	0										
			48	5	10		20 25		35	41	46	52	57	63	69		81 8		94	8	_									
Wet Bulb Temperatures			49	-35	-13		5 11 17 21	16	20		27	30	32	35 58						7 4	9									
			_		-22		21 2 8	14	31 18	37 22	42 25	28	53 31		64 36		75 8 41 4		87 9 45 4	14	0									
21 <mark>22</mark> 23 <mark>24</mark> 25 <mark>26</mark> 27 <mark>28</mark> 29 <mark>30</mark>				50	4	9 1	13 18	23	28	33	38	43	48	53	59		70 7		32 8	8 9)								
31 -20 -8 0 6 11 16 19 23 26 28 31				51	-39	-14 -	-3 5		16	20	24	27	30	33	35	37	40 4	12	44 4		8 49	51	1							
10 18 26 35 44 32 61 71 80 90	-			щ	2	6 1	0 15		24	29	34	39	44	49	54	60	65 7	71	76 8	2 8		+	-	•						
32 -35 -15 -4 3 9 13 17 21 24 27 30 32 4 12 20 28 37 45 54 63 73 81 90 32	2				52	-24 -	-8 1 8 12	8	13 21	18 26	22 30	25	28 40	31 45	34 50		39 4 60 6		43 4 71 7	5 4	7 49	9 50 3 94		4						
05 40 4 5 44 45 40 00 05 00 0	1 22				E2	-45 -1	16 -3		11		20	24	27	30	33						6 48			E2	1					
7 15 22 30 39 47 56 64 73 82 91	33				53	1 !	5 9		18	22	27	32	36	41	46	51	56 6		66 7	2 7	7 83	88	94	53						
34 -48 -18 -6 2 8 12 17 20 24 27 29 17 25 32 40 49 57 65 74 83		34				54	27 -9	1	8	13	18	22		29							5 47				54	ı				
2 9 17 25 32 40 49 57 65 74 63		22	_		ŀ	_	53 -17	7 -4	15 4	19 11	24 16	20	33 24	27	30		52 5 36 3		62 6 40 4		2 77	7 83 3 48		94 52		\vdash				
35 -31 -13 -3 4 10 14 18 22 25 26 26 26 26 26 26 26 26 26 26 26 26 26		92 3	5		ı	55	1 5		13	17	21	25	29	34	38	41	48 5		57 6	2 6		78	83	89	94	55	İ			
36 -22 -9 0 7 12 16 20 23 26		32 3			•	5	6 -29	9 -10	0	8	13	18		26							4 46	47	49				56	l		
7 14 21 29 30 44 32 00 08	76	84 9	2			٦	2	2 6	10	14	18	22	26	31	35	39	44 4		53 5		3 68	73		83	89	94	ш	—		
37 $\begin{bmatrix} -40 \\ 3 \end{bmatrix}$ $\begin{bmatrix} -16 \\ 9 \end{bmatrix}$ $\begin{bmatrix} -5 \\ 16 \end{bmatrix}$ $\begin{bmatrix} 3 \\ 23 \end{bmatrix}$ $\begin{bmatrix} 9 \\ 14 \end{bmatrix}$ $\begin{bmatrix} 14 \\ 18 \end{bmatrix}$ $\begin{bmatrix} 22 \\ 25 \end{bmatrix}$ $\begin{bmatrix} 25 \\ 61 \end{bmatrix}$	28 1 69	30 3 76 8		37			57	-18	-4 8	4 12	11 15	16	20 23	24	27 32		33 3		38 4 49 5		3 45 9 64			50 79	52 84	54	55	57		
07 44 4 6 44 46 00 00	_	29 3		36			-	-31	-10	0	7	13	18	22	26	29	_		_		2 44	1 46			51	53	55	56	- 0	
38 5 12 19 26 33 40 47 55	62	69 7	7 84	92	38		58	2	6	9	13	17	21	25	29	33	37 4	11	46 5	0 5	5 59	64	69	74	79	84	89	95	58	
Dry Bulb 39 -55 -19 -6 2 8 13 18 21		27 3			37	39		59	-19	-5	4	11	16	20	24					9 4				49		53	54	56		59
20 42 2 5 44 45 46		63 7 26 2		85 34	92	_		\vdash	22	7 -11	11	14	18 13	18	26 22		34 3 29 3		42 4 35 3	7 5 8 4	0 42			69 48	74 50	79 52	84 54	89 55	95	58
Temperatures 40 3 10 16 23 29 36 43	50	57 6	4 71	78	85	38 92		60	-32 2	5	9	12	16	19	23	27	31 3		35 3 39 4		7 52	56	61	65	70	75	79	84		95
15 15 25 25 56 70		, ,						_			-					-														

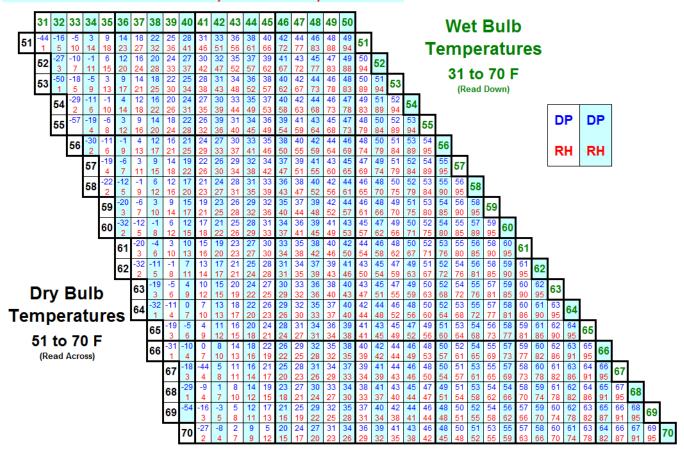
Elevations between 3,901 and 6,100 feet

	38	39	40	41	42	43	44	1 4	5 4	6	47	48	49	50	51	52	53	54	55	56	57	58	59	60																			
0.4	-19	-5	4	11	16	21	24		_		34	37	39	41	43	46	48	49	51	53		56	58		04	1					١	Ne	et.	Βu	Ilb)							
61	3	7	10	14	17	21	24				36	40	44	48	52	57	61	66	70	75	80	85	90	95	61					т	'Ar	nı	20	rat		ro	•						
62	-33	-11 5	0	8	14	19	23					35	38	40	43	45	47	49	51	52	54	56	57	59	61	62											3						
	1	-19	-5	4	15	18 16	21	2			33 31	37 34	41 37	39	49 42	53 44	57 46	62 48	66 50	52	75 54	55	85 57	58	95 60	62		ı			(38	to	79	F								
	63	3	6	9	13	16	20	23			30	34	38	42	46	50	54	58	62	67	71	76	80	85	90	95	63					(R	ead	Dow	n)								
	64	-34	-11	0	8	14	19					33	36	38	41	43	45	47	49	51	53	55	56	58	60	61	63	64				•											
	ч	1	4	8	11	14	17	2			28	31	35	39	43	46	50	54	59	63	67	72	76	81	85	90	95		Щ								_						
		65	-19	-4 6	5	11	17	-			29 25	32 29	35 32	37 36	40 40	42	44	47 51	49 55	50 50	52 63	54	56 72	57 76	59 81	61 86	62 90	05	65					DI	5	DI	ь						
		~~	-33	-10	1	8	14	- '				31	34	36	39	41	44	46	48	50	52	53	55	57	58	60	62	63	65	0.5	ı			וט		יט							
		66	1	4	7	10	13		3 2	20	23	26	30	33	37	40	44	48	52	56	60	64	68	72	77	81	86	90	95	65													
	•	П	67	-19	-4	5	12					29	32	35	38	40	43	45	47	49	51	53	55	56	58	60	61	63	64	66	67			RI	1	RI	Н						
		- 1		3	6	8	11	15	_		21	24	27 31	31	34	38	41	45	49	52 48	56	60	64	68	73	77 59	81	86	90	95		_											
		- 1	68	-32 1	-10 4	7	9				24 19	28	25	28	37 32	35	42 39	44 42	46 46	48	50 53	52 57	54 61	56 65	57 69	73	61 77	62 82	64 86	65 91	95	68	l										
				-	-18	-3	6	12	_		22	26	30	33	36	38	41	43	45	48	50	52	53	55	57	59	60	62	63	65		68	~	l									
				69	3	5	8	1	1 1		17	20	23	26	29	33	36	39	43	46	50	54	57	61	65	69	73	78	82	86	91	95	69										
				70	-31	-9	2				20	25	28	32	35	37	40	42	45	47	49	51	53	55	56	58	60	61	63	64	66	67	69	70									
					1	-17	-3	9	_		15 18	18 23	21	30	33	36	33	37 41	40	44	47 48	51	54 52	58	62 56	66 57	70 59	74 61	78 62	82 64	86 65	91 67	95 68		\neg								
					71	3	5		1		13	16	19	22	25	28	31	34	38	41	44	48	51	55	58	62	66	70	74	78	82	87	91	95	71								
					72	-29	-8	3	1			21	25	29	32	35	38	41	43	45	47	49	51	53	55	57	59	60	62	63	65	66	68	69	71	72							
					72	1	4	6			12	14	17	20	23	26	29	32	35	38	42	45	48	52	55	59	63	66	70	74	78	83	87		95	72							
						73	-15	5 -2			14	19	23	27	31	34	37	40	42	44	47	49	51	53	55	56	58	60	61	63	64	66	67			72	73						
						Ë	-26	5 -7	_	_	10 11	13 17	16 22	18 26	21 30	33	27 36	39	33 41	36 44	39 46	42 48	46 50	49 52	52 54	56 56	59 58	63 59	67 61	62	75 64	79 66	83 67		91 70	96 71	73						
						74	1	4			9	11	14	17	19	22	25	28	31	34	37	40	43	46	50	53	56	60	64	67	71	75	79		87		96	74					
						75	-52	2 -1	4	_		15	20	24	28	32	35	38	40	43	45	47	49	51	53	55	57	59	60	62	64	65	67				_	74	75	l			
						75	Ш	3		5	7	10	12	15	18	20	23	26	29	31	34	37	41	44	47	50	53	57	60	64	68	71	75	79	83	87	91	96	Щ	Щ			
	D	ry	В	ul	b		76	-2	4	5	5	12	18	22	27	30	33	36	39	42		47	49 38	51	53	55	56 51	58	60	62	63 64	65	66	68	69		72 87	73	75	76	ĺ		
		_					⊢	4	3 -	12	6	9	15	21	16 25	29	21 32	35	27 38	41	32 43	46	48	50	44 52	47 54	56	58	57 59	61	63	64	72 66	67	69		72	91 73	96 74	76		l	
Т	em	ıρ	era	atı	ure	es:	77	1	1		5	7	10	12	14	17	19	22	25	27	30	33	36	39	42	45	48	51	55	58	61	65	68		76		83	87	92	96	77	l	
		ı t					_	78	-2		-4	6	13	19	23	27	31	34	37	40	43	45	47	49	51	53	55	57	59	61	62	64	65			70	71	73		75	77	70	l
								Ľ		2	4	6	8	11	13	15	18	20	23	26	28	31	34	37	40	42	46	49	52	55	58	62	65	69	72		80	84	88	92	96	10	<u>—</u>
	(I	Read	d Ac	ros	s)			79	9 -	36 -	-10 3	2	10 7	16	21	26	30	33	36	39	42 26	44	46 32	49	51	53 40	55 43	57	58	60 52	62	63	65 62				71	72	74	75 88	76 92	78	79
								Ц	╇		3 -18	-2	7	14	12 20	14 24	16 28	19 32	21 35	38	41	29 43	46	48	37 50	52	54	46 56	49 58	•	61	59 63	65		69 68		76 71	80 72	84 73		76	77	79
									8	0	2	4	6	8	10	13	15	17	20	22	25	27	30	32	35	38	41	44	47	50	53	56	59	63	66		73	77	80	84	88	92	96
													_																								_						

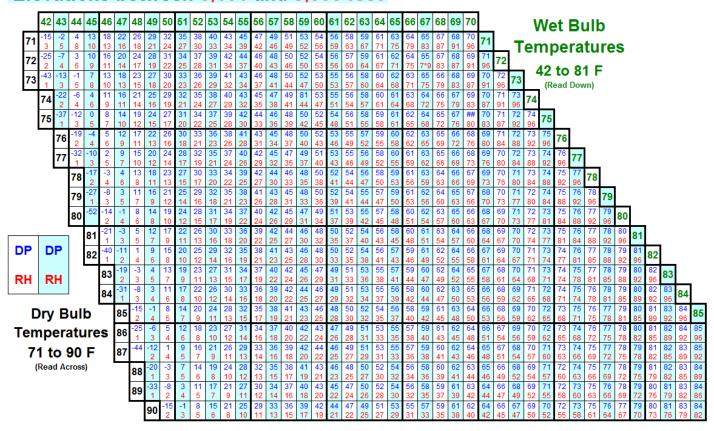
Elevations between 3,901 and 6,100 feet


Г	40	49	50	E4	52	E2	54	A		56	57	58	59	60	61	62	63	64	65	cc	67	68	69	70	74	72	73	74	75	76	77	78	79	80	l		1/	10	. D		L			
\dashv		_		91					_						_									70	7 1	72					77	70					V	ve	ם ו	ul	D			
81	-8 3	5	11	1/ 9	22	27 14	16		34 18	37 21	23	42 25	45 28	47 31	49 33	51 36	53 39	55 41	57 44	59 47	61 50	62 53	64 56	66	67 63	69 66	70 70	72 73	73 77	74 80	76 84	88	78 92	80 96	81	Т	en	np	era	atu	ıre	S		
82	-15	-1	8	15	21	25		9 ;	33	36	39	41	44	46	49	51	53	55	57	59	60	62	64	65	67	68	70	71	73	74	75	77	78	80	80	82	L	10	to	00	9 F			
02	2	4	6	8	10	12	_	_	17	19	21	24	26	29	31	34	37	39	42	45	48	51	54	57	60	63	67	70	73	77	81	84	88	92	96		-							
83	-26	-6 3	5	13	19 9	23 11	13		31 15	35 18	38 20	41 22	43 25	46	48 29	50 32	52 35	54 37	56 40	58 43	60 45	61 48	63 51	65 54	66 57	68 60	69 64	67	72 70	74	75 77	76 81	78 84	79	80 92	82 96	83	(R	ead	Dow	/n)			
84	-49	-12	1	10	16	22	_	_	30	34	37	40	42	45	47	49	52	54	56	57	59	61	63	64	66	68	69	71	72	73	75	76	78	79	80		83	84	ı					
04	_	2	4	6	8	10	-	_	14	16	18	21	23	25	28	30	33	35	38	41	43	46	49	52	55	58	61	64	67	71	74	77	81	85	88	92	96	\mathbf{L}	Щ					
	85	-21	-3	7 5	14	20 9	24		29 13	32 15	36 17	39	41	24	46 26	49	51 31	53	55 36	57	59 41	61	62 47	64	66 52	67 55	69 58	70 61	72 64	73 68	74	76 74	77 78	79	80 82	81	82 92	84 96	85					
ŀ	06	-37	-9	3	11	18	23	_	27	31	34	38	40	43	46	48	50	52	54	56	58	60	62	63	65	67	68	70	71	73	74	76	77	78	80	81	82	83	85	0.0	ĺ			
L	86	1	2	4	6	8	10) .	12	14	16	18	20	22	25	27	29	32	34	36	39	42	44	47	50	53	56	59	62	65	68	71	74	78	81	85	89	92	96	86	<u> </u>			
		87	-17	-1	8	15 7	2.		26 11	30	33 15	36 17	39 19	42	45	47	50 28	52 30	54 32	56 35	58 37	60 40	61 42	63	65 48	66 50	68 53	69 56	71 59	72 62	74 65	75 69	77	78 75	79 79	81	82 85	83 89	85 92	86	87	l		
	ŀ		-29	-6	5	13	_		24	28	32	35	38	41	44	46	49	51	53	55	57	59	61	63	64	66	67	69	71	72	73	75	76	78	79	80	82	83	84	86	87	00	i	
	L	88	- 1	2	4	6	8		10	12	13	15	17	20	22	24	26	28	31	33	35	38	40	43	45	48	51	54	56	59	62	65	68	72	75	78	82	85	89	92	96	88		
		- 1	89	-13	1	10 5	17		22	27	31	34	37	40	43	46	48	50	53	55	57 33	58	60 38	62	64	65	67	69	70 54	72	73	7	76	77	79	80	81	83	84	85		88 96	89	i
		ı	_	-22	-3	7	14	_	9 20	25	12 29	33	16 36	18 39	20 42	45	24 47	50	29 52	54	56	36 58	60	62	43 63	46 65	49 67	51 68	70	71	60 73	63 74	66 76	77	72 78	75 80	78 81	82 82	85 84	85	93 86		89	
			90	1	3	4	6		8	10	11	13	15	17	19	21	23	25	27	30	32	34	36	39	41	44	46	49	52	54	57	60	63	66	69	72	75	79	82	85	89	93	96	90
		- [91	-40		3	12		18	23	28	32	35	38	41	44	47	49	51	53	55	57	59	61	63	65	66	68	69	71	72	74	75	77	78	80	81	82	84	85	86		89	90
		ı	щ		2 -17	-1	5	_	7 16	9 22	26	12 30	34	16 37	18 40	43	46	48	26 51	28 53	30 55	32 57	35 59	37 61	39 62	42 64	44 66	47 67	49 69	71	55 72	58 74	75	63 76	66 78	69 79	72 81	76 82	79 83	82 85	86	89 87	93 88	96 90
				92	1	3	4		6	8	9	11	13	15	17	19	20	22	24	27	29	31	33	35	38	40	42	45	47	50	52	55	58	61	64	67	70	73	76	79	82	86	89	93
				93	-29	-6		- 1	14	20	25	29	33	36	39	42	45	48	50	52	54	56	58	60	62	64	65	67	69	70	72	73	75	76	78	79	80	82	83	84	86	87	88	89
	_			30	1	-12	2 2	_	5	7 18	9 23	10 28	12 32	14 35	16 38	17 41	19 44	21 47	23 49	25 51	27 54	29 56	31 58	34 60	36 61	38 63	40 65	43 67	45 68	48 70	50	53 73	56 74	58 76	61	64 79	67 80	70 81	73 83	76 84	79 85	82 87	88	89 89
D	P	D	Р		94	2	3		5	6	8	9	11	13	14	16	18	20	22	24	26	28	30	32	34	36	39	41	43	46	48	51	53	56	59	61	64	67	70	73	76	79	83	86
-	'	_	•		95	-22	-3	3	8	15	21	26	30	34	37	40	43	46	48	51	53	55	57	59	61	63	65	66	68	69	71	73	74	76	77	78	80	81	82	84	85	86	88	89
۱.,		_			⊢	1	2		4	5	7	9	10	12	13	15	17	19	21	22	24	26	28	30	33	35	37	39	41	44	46	49	51	54	56	59	62	65	67	70	73	76	80	83
R	н	K	Н		96	-39	2		3	13 5	19	24 8	29 9	33	36 13	40 14	42 16	45 18	48 19	50 21	52 23	55 25	57 27	59 29	60 31	62 33	64 35	66 37	67 40	69 42	44	72 47	74 49	75 51	54	78 57	80 59	81 62	82 65	84 68	85 71	86 74	87 77	89 80
	ъ.		ь	lh.	_	97	-		0	10	17	23	27	32	35	39	42	44	47	49	52	54	56	58	60	62	64	65	67	69	70	72	73	75	76	78	79	81	82	83	85	86	87	88
Dry Bulb		97	1		3	4	5	7	8	10	12	13	15	17	18	20	22	24	26	28	30	32	34	36	38	40	42	45	47	49	52	54	57	60	62	65	68	71	74	77				
Te	mı	oei	rat	ur	es	98	-2 1	1	-4 2	7	15	21 6	26 8	30	34	37	41	44 16	46	49 19	51	53 23	55 24	58 26	59 28	61 30	63 32	65 34	67	68 38	70	72 43	73	75 47	76	78 52	79	80 57	82	83 63	84	86 68	87	88
						_	-	4 -	10	3	12	19	24	29	33	36	40	43	45	48	50	53	55	57	59	61	63	65	66	68	70	71	73	74	76	77	79	80	81	83	84		87	88
81 to 100 F		•	99	Ĺ		1	3	4	6	7	8	10	11	13	15	16	18	20	21	23	25	27	29	31	33	35	##	39	41	43	46	48	50	53	55	58	60	63	66	68	71			
	(Re	ad A	Acro	oss)		1	00	1-	19	-1 2	9	17 5	22 6	27 8	32	35 11	39 12	42 14	45 15	47 17	50 19	52 20	54	56 24	58	60 27	62 29	64 31	66	68 35	69 37	71 39	72 41	74 44	75	77 48	78 54	80 53	81	83 58	84	85 63	87	88 69
						_		_	1	2	4	5	0	8	9	11	12	14	15	17	19	20	22	24	20	21	29	31	33	35	3/	39	41	44	40	48	51	53	55	28	01	03	00	09

Elevations between 3,901 and 6,100 feet Wet Bulb Temperatures, 55 to 90 F

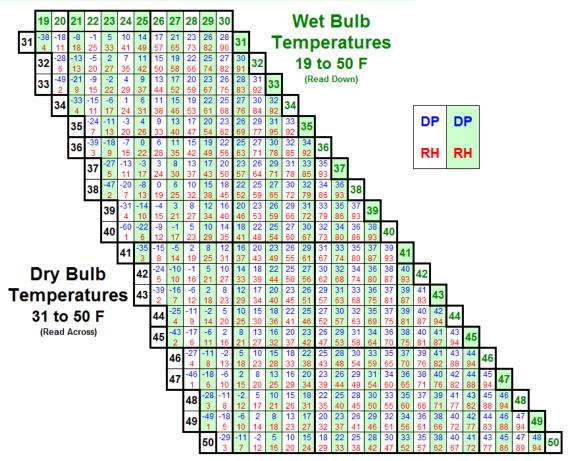

		55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90
1	01	-33	-6 2	6	14 4	21 6	26 7	30 8	34 10	38 11	41 13	44 14	46 16	49 18	51 19	54 21	56 23	58 24	60 26	62 28	64 30	65 32	67 34	69 36	70 38	72 40	74 42	75 44	77 46	78 49	79 51	81 53	82 56	84 58	85 61	86 63	88 66
_	10	12	-13	2	12	19	24	29	33	37	40	43	46	48	51	53	55	57	59	61	63	65	67	68	70	72	73	75	76	78	79	81	82	83	85	86	87
	<u> </u>	\dashv	-22	-2	9	5 16	6 22	27	9 32	11 35	12 39	13 42	15 45	17 48	18 50	20 52	21 55	23 57	25 59	27 61	28 63	30 65	32 66	34 68	36 70	38	40 73	42	76	47	49 79	51 80	54 82	56 83	59 84		64 87
	10)3	1	2	3	4	6	7	8	10	11	13	14	16	17	19	20	22	24	25	27	29	31	33	35	37	39	41	43	45	79 47	49	52	54	56		61
	10		-39	-7	5	14	20	26	30	34	38	41	44	47	49	52	54	56	58	60	62	64	66	68	69	71	73	74	76	77	79	80	81	83	84		87
	10	14		1	3	4	5	6	8	9	10	12	13	15	16	18	19	21	23	24	26	28	29	31	33	35	37	39	41	43	45	47	50	52	54		59
		10	5	-14 1	2	11	18 5	24 6	29 7	33 8	37 10	40 11	43 12	46 14	49 15	51 17	53 18	56 20	58 21	60 23	62 25	64 26	65 28	67 30	69 32	71 34	72 36	74 37	75 39	77 41	78 44	80 46	81 48	83 50	84 52		87 57
		10	6	-25	-3 2	8	16	22	27	32	36	39	42	45	48	50	53	55	57	59	61	63	65	67	69	70	72	73	75	77	78	80	81	82	84	85	86
		-	٥	1		3	4	5	6	8	9	10	12	13	14	16	17	19	20	22	24	25	27	29	30	32	34	36	38	40	42	44	46	48	50		55
		10	7	-47	-8	5	14	20	26	30 7	35	38	41	44	47	50	52	54	57	59	61	63	65	66	68	70	72	73	75	76	78	79	81	82	83		86
			_		-16	1	11	5 18	6 24	29	33	10 37	11 40	12 44	14 46	15 49	17 52	18 54	19 56	21 58	23 60	62	26 64	27 66	29 68	31 69	33 71	35 72	36 74	38 76	40 77	79	44 80	46 82	49 83		55 86
			10	8	1	2	3	4	5	7	8	9	10	12	13	14	16	17	19	20	22	23	25	26	28	30	31	33	35	37	39	41	43	45	47		51
		ı	10	0	-27	-3	8	16	23	28	32	36	39	43	46	48	51	53	56	58	60	62	64	66	67	69	71	72	74	76	77	79	80	82	83		86
			10	9		2	3	4	5	6	7	8	10	11	12	13	15	16	18	19	21	22	24	25	27	28	30	32	34	35	37	39	41	43	45	47	49
			11	0	-58	-9	5 2	14	21	26 5	31	35	38 9	42 10	45	48	50	53 15	55 17	57	59 20	61 21	63 23	65 24	67 26	69 27	70 29	72	74 32	75 34	77 36	78	80 40	81	83 43	84 45	85
		ı	_		Н	-17	1	11	4 19	24	29	34	37	41	11 44	13 47	14 49	52	54	18 57	59	61	63	65	67	68	70	72	73	75	77	38 78	80	41 81	82		47 85
			- 1	11	11	1	2	3	4	5	6	7	8	10	11	12	13	15	16	17	19	20	22	23	25	26	28	29	31	33	34	36	38	40	42	44	46
DP	DP DP		ı	44	12	-29	-4	8	16	23	28	32	36	40	43	46	49	51	54	56	58	60	62	64	66	68	70	71	73	75	76	78	79	81	82		85
			L				1	2	3	4	6	7	8	9	10	11	13	14	15	16	18	19	21	22	24	25	27	28	30	31	33	35	37	38	39	42	44
BU	RH RH				11	13	-10	5 2	14 3	21	26 5	31 6	35 7	39 8	42 10	45 11	48 12	51 13	53 14	55 16	58 17	60 18	62 20	64 21	66 23	68 24	69 26	71	73 29	74 30	76 32	77	79 35	80 37	82 39	83 41	85 43
КП	K	П			_		-18	1	11	19	25	30	34	38	41	44	47	50	53	55	57	59	61	63	65	67	69	71	72	74	76	77	79	80	82		85
					11	14	1	2	3	4	5	6	7	8	9	10	11	12	14	15	16	17	19	20	22	23	24	26	27	29	31	32	34	36	37	39	41
					11	15	-31	-4	8 2	17	23 4	28 5	33 6	37	40 8	44 9	47 11	49 12	52 13	54 14	57 15	59 17	61 18	63 19	65 21	67 22	69 23	70 25	72 26	74 28	75 29	77 31	78 33	80 34	81 36	83 38	84 40
_		_		١	Щ	_	<u> </u>	-10	5	14	21	27	32	36	39	43	46	49	51	54	56	58	60	62	64	66	68	70	72	73	75	77	78	80	81		84
	Dry Bulb						16	1	2	3	4	5	6	7	8	9	10	11	12	13	15	16	17	18	20	21	23	24	25	27	28	30	31	33	35	36	38
Ten	Temperatures							-18	1	12	19	25	30	35	38	42	45	48	51	53	55	58	60	62	64	66	68	70	71	73	75	76	78	79	81		84
•						_	17	-31	-3	9	3 17	24	5 29	6 33	7 37	8 41	9 44	47	12 50	13 52	14 55	15 57	16 59	18 62	19 64	20 65	22 67	69	71	26 73	27 74	76	30 78	32 79	33 81	35 82	37 84
10	101 to 119 F						18	-31	1	2	3	4	5	6	7	8	9	10	11	12	13	14	16	17	18	19	21	22	23	25	26	28	29	31	32		35
((Read Across)						4.	19	-9	6	15	22	27	32	36	40	43	46	49	52	54	57	59	61	63	65	67	69	71	72	74	76	77	79	80		83
·							_1	19	1	2	3	4	4	5	6	7	8	9	10	12	13	14	15	16	17	19	20	21	22	24	25	27	28	30	31	33	34

1.3.5 Elevations between 6101 and 8500 ft (1860 and 2600 meters)

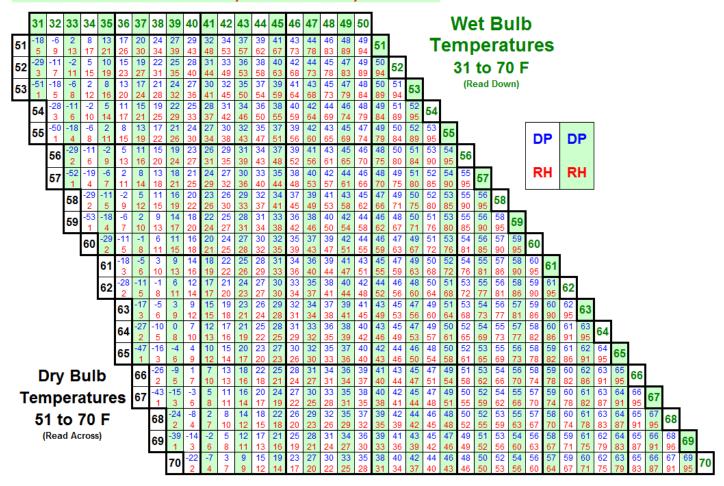

Elevations between 6,101 and 8,500 feet

Elevations between 6,101 and 8,500 feet

Elevations between 6,101 and 8,500 feet



Elevations between 6,101 and 8,500 feet Wet Bulb Temperatures, 50 to 85 F


																(Re	ead	Dov	/n)																		
		50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85
	91	-25	-5	5	13	19	24	28	32	35	38	41	43	46	48	50	53	55	57	58	60	62	64	65	67	68	70	71	73	74	76	77	78	80	81	82	84
	91	1	2	4	5	7	9	10	12	14	16	17	19	21	23	25	27	29	31	34	36	38	40	43	45	48	50	53	56	58	61	64	67	70	73		79
	92	-44	-11	2	10	17	22	27	30	34	37	40	43	45	48	50	52	54	56	58	60	61	63	65	66	68	70	71	73	74	75	77	78	79	81		83
	02		2	3	5	6	8	10	11	13	15	16	18	20	22	24	26	28	30	32	34	36	39	41	43	46	48	51	53	56	59	61	64	67	70		76
		93	-18	-2	6	15	20	25	29	33	36	39	42	44	47	49	51	53	55	57	59	61	63	64		69	69	71	72	74	75	76	78	79			83
			-31	-7	4	6 12	7 18	9 23	10 28	12 32	14 35	15 38	17 41	19 44	21 46	23 49	24 51	26 53	28 55	30 57	33 59	35 61	37 62	39 64	41 66	44 67	46 69	49 70	51 72	54 73	56 75	59 76	62 78	64 79	67 80		73 83
		94	1	2	3	5	6	8	9	11	13	14	16	18	20	21	23	25	27	29	31	33	35	37	40	42	44	47	49	51	54	57	59	62			71
		_	<u> </u>	-13	1	10	16	22	26	30	34	37	40	43	45	48	50	52	54	56	58	60	62	64		67	69	70	72	73	75	76	77	70			83
			95	1	3	4	6	7	9	10	12	13	15	17	18	20	22	24	26	28	30	32	34	36	38	40	42	45	47	49	52	54	57	60	62		68
			96	-22	-3	7	14	20	25	29	33	36	39	42	45	47	50	52	54	56	58	60	61	63	65	67	68	70	71	73	74	76	77	78	80	81	82
			96	1	2	4	5	6	8	9	11	12	14	16	17	19	21	23	24	26	28	30	32	34	36	38	41	43	45	47	50	52	55	57	60	63	65
			97	-38	-9	4	12	18	23	28	32	35	38	41	44	46	49	51	53	55	57	59	61	63	64	66	68	69	71	72	74	75	77	78			82
			91		2	3	4	6	7	9	10	12	13	15	16	18	20	21	23	25	27	29	31	33	35	37	39	41	43	45	48	50	53	55	$\overline{}$		63
				98	-16	0	3	16	22	26	30	34	37	40	43	46	48	50	53	55	57	59	61	62	64	66	67	69	71	75	74	75	76	78			82
		1			1	2	4	5	6	8	9	11	12	14	15	17	19	20	22	24	26	27	29	31	33	35	37	39	41	44	46	48	51	53			60
- DD	-			99	-26	-5 2	4	14	20 6	25 7	29 9	33 10	36 11	39 13	42 14	45	48 18	50	52 21	54 23	56 24	58	60 28	62 30	64 32	65 34	67 36	69 38	70 40	72 42	73	75	76 49	78 51			81 58
DP	DP		_	щ	-47	-10	3	4	18	23	28	32	35	39	42	16 44	47	19 49	51	54	56	26 58	60	61		65	67	68	70	71	73	46 74	76	77			81
			10	00	-47	1-10	3	4	5	7	8	9	11	12	14	15	17	18	20	21	23	25	27	28	30	32	34	36	38	40	42	44	47	49			56
RH	RH					-18	-1	9	16	22	26	31	34	38	41	43	46	49	51	53	55	57	59	61		65	66	68	70	71	73	74	75	77			81
IXII	IXII			10)1	1	2	3	5	6	7	9	10	11	13	14	16	17	19	20	22	24	25	27	29	31	33	35	37	39	41	43	45	47	49		54
		ı		٦,		-29	-4	6	14	20	25	29	33	37	40	43	45	48	50	53	55	57	59	61	62	64	66	68	69	71	72	74	75	77			81
				10)2		2	3	4	5	7	8	9	11	12	13	15	16	18	19	21	23	24	26	28	29	31	33	35	37	39	41	43	45	47	50	52
					10	13	-12	2	11	18	23	28	32	36	39	42	45	47	50	52	54	56	58	60	62	64	66	67	69	70	72	74	75	76	78		81
					Ĺ	,,	1	2	4	5	6	7	9	10	11	13	14	15	17	18	20	22	23	25	26	28	30	32	34	35	37	39	41	43	46		50
					10	14	-20	-2	9	16	22	27	31	35	38	41	44	46	49	51	54	56	58	60	62	63	65	67	68	70	72	73	75	76	78		80
						_	1	2	3	4	5	7	8	9	10	12	13	15	16	17	19	20	22	24	25	27	29	30	32	34	36	38	40	42	44	46	48
					10)5	-33	-6 1	6	14 4	20 5	25 6	30 7	33 9	37 10	40 11	43 12	44 14	48 15	51 17	53 18	55 20	57	59 23	61 24	63 26	65 27	66 29	68 31	70 33	34	73 36	74 38	76 40	42	79 44	80 46
	_	_		ı	щ		_	-13	2	11	18	24	28	32	36	39	42	45	48	50	52	55	57	59	61	63	64	66	68	69	71	73	74	76	77	-	80
	Dry	Вι	ull	O		10	06	1	2	3	4	6	7	8	9	10	12	13	14	16	17	19	20	22	23	25	26	28	30	31	33	35	37	39	41	43	45
	_				_		_	-21	-2	9	16	22	27	31	35	38	41	44	47	49	52	54	56	58	60	62	64	66	67	69	71	72	74	75	77		80
ıer	npe	ra	tu	re	S	10	07	1	2	3	4	5	6	7	9	10	11	12	14	15	16	18	19	21	22	24	25	27	28	30	32	34	35	37	39	41	43
_	4 4 -	40		_		40	08	-35	-7	5	14	20	25	30	34	37	41	43	44	49	51	53	56	58	60	62	63	65	67	69	70	72	74	75	77		79
9	1 to					10	00		1	2	3	5	6	7	8	9	10	12	13	14	15	17	18	20	21	23	24	26	27	29	31	32	34	36		$\overline{}$	41
	(Read	Acro	oss)				10	19	-13	2	11	18	24	29	33	36	40	43	45	48	51	53	55	57		61	63	65	67	68	70	72	73	75			79
							∟"	,5	1	2	3	4	5	6	7	9	10	11	12	13	15	16	17	19	20	22	23	25	26	28	29	31	33	34	36	38	40

1.3.6 Elevations above 8500 ft (2600 meters)

Elevations between 8,501 and 11,000 feet

Elevations between 8,501 and 11,000 feet

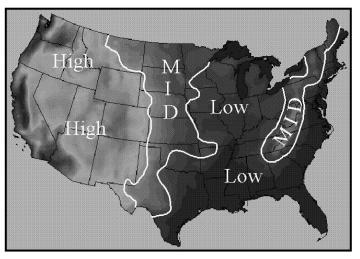
Elevations between 8,501 and 11,000 feet

	41	42 4	3 44	45	46	47	48	49	50	51	1 52	2 5	3 54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70				۷	۷e	t I	3 ι	ılk)										
71	-12 3	-1 6 6 8	12	17 13	22 15	25 18	29 21	32 23		37	7 39		2 44 5 38	46	48 44	50 47	52 50	53 54	55 57	57 60	58 64	60 68	61 71	63 75	64 79	66 83	67 87	68 91	70 96	71		T	en	np	eı	rat	tu	re	S									
72	_	-5 4	10	15	20	24	27	30	33	36	38	3 4	1 43	_	47	49	51	53	55	56	58	60	61	63	64	65	67	68	69	71	72			_	to								_					
73	-31 -	10 0	7	13	18	22	26	29	32	2 35	38	3 4			46	48	50	52	54	56	57	59	61	62	64	65	66	68	69	70	72	73			ad [L	\Box					
ت	_	3 6	8	10	13	15 21	25	20	22	2 25	28	3 3	0 33 9 41		39 46	42	45 50	48 52	51 54	55 55	58 57	61 59	66	68	72 63	76 65	80 66	83 67	87 69	92 70	96 71																	
	74	2 4	7	9	11	14	16	18	21	23	3 26	3 2	9 31	34	37	40	43	46	49	52	55	58	62	65	69	72	76	80	84	88	92	96	74															
	75	1 3	6	8	14 10	19 12	23 14	17	19	33	2 24	3 3 4 2 2	8 41 7 29	43 32	45 35	37	49 40	51 43	53 46	55 49	57	58 56	59	62	66	64 69	66 73	67 76	69 80	70 84	/1 88	72 92	74 96	75														
	7	76 -1	5 -2	6	12 9	17	22 13	26	29	32	2 35	5 3	7 40	42	44	47	49 38	50 41	52	54 47	56 50	58 53	59 56	61	63	64	65 60	67	68 76	70	71 24	72	73 92	75 96	76													
	- 1	77 -2	3 -7	3	10	15		24	28	31	1 34	4 3	7 39	41	44	46	48	50	52	54	55	57	59	61	62	64	65	67	68	69	71	72	73	74	76	77												
	F	2	7 -12	6	7	10	12	23	16	30) 33	1 2:	3 26 6 38	28	31 43	33 45	36 47	39 49	42 51	53	47 55	50 57	53 58	56 60	60 62	63 63	66 65	70 66	73 68	77 69	70	72	73	92 74	96 75	77	70											
	Ľ	78 🚆	3	5	7	9	11	13	15	17	19		2 24	27	29	32	34	37	39	42	45	48	51	54	57	60	63	67	70	73	77	81	84	88	92	96	78											
		7	2	4	5 6	7	16 10	12	14	16	32	2 3	5 37 0 23	40 25	42 27	45 30	47 32	49 35	51 37	53 40	54 43	56 46	58 48	60 51	51 54	63 57	64 60	66 64	67	70	70 74	77	81	84	75 88	76 92	78 96	79										
		8	31	-10 3	1 5	9	14 a	19	24	27	7 3	1 3	4 37	39	42 26	44	46 30	48	50 35	52 38	54 41	56 43	57 46	59 49	61 52	62 55	64 58	66 61	67 64	68 67	70 71	71 74	72 77	74 81	75 85	76 88	77 92	79 96	80									
			81	-16	-2	6	13	18	22	2 26	30	3	3 36	38	41	43	45	47	49	51	53	55	57	59	60	62	64	65	67	68	69	71	72	73	75	76			80	81								
			-	2	-7	3	10	16	20	13	15	3 3	8 20 2 35	37	40	26 42	29 45	31 47	34 49	36 51	39 53	41 55	56	47 58	60	52 62	55 63	58 65	66	64 68	68	71	74	78 73	75	76	88 77	92 78	96 80	0.4								
			82	-	3	5	6	8	10	12	2 14	4 1	6 18 1 34	20	23 39	25	27 44	29	32	34	37	39 54	42 56	44 58	47 59	50	53	56 64	59	62	65 69	68	71	74	78	81	85 77	89	92 79	90	82	_						
	_			83	2	4	6	7	19 9	11	1 13	7 3 3 1	5 17	37 19	21	42 23	26	46 28	30	32	52 35	37	40	42	45	48	63 50	53	56	59	62	70 65	68	71	75	78	81	85	89	92	90	83						
D	P	DP		84	-20 1	-5 3	5	12	17	22	2 26	2 1	9 33	36	38	41	43 24	46 26	48 28	50 31	52 33	54 35	55 38	57 40	59 43	61 45	62 48	64 51	66 54	67 56	69 59	70 62	71 65	73 68	74 72	75 75	77 78	78 82	79 85	80	82 92	83	84					
_				85	-32	-10	2	9	15	20) 24	4 2	8 32	35	38	40	43	45	47	49	51	53		57	58	60	62	64	65	67	68	70	71	72	74	75		78	79	80		83	84	85				
K	н	RH			86	-16	-2	7	13	9	3 23	1 13	3 15 7 30	34	37	39	42	25 44	46	29 49	31 51	53	36 54	38 56	41 58	60	61	63	65	54 66	68	69	71	72	74	72 75	76	78 77	79	80	89	92 82	96 84	85 86 8	6			
					_	2	3	5	7	8	10	1 2		15	17 36	19 39	21 41	23	25	28 48	30 50	32 52	34 54	37	38 58	41 59	44 61	46 63	49	52	54 67	57 69	60	63	66	69 75	72 76	75 77	79	82	85	89	93	96 ° 85 8	-	-		
					87	1	3	4	6	7	9	1	1 13	14	16	18	20	22	24	26	28	30	33	35	37	39	42	44	47	49	52	55	57	60	63	66	69	72	76	79	82	86	89	93 9	6 8	7	_	
	D	ry I	3ul	b		88	-12 2	2 0	8	15	20	2	4 28 0 12	32 13	35 15	38 17	40 19	43 21	45 23	47 25	49 27	51 29	53 31	55 33	57 35	59 38	61 40	62 42	64 45	66 47	67 50	69 52	70 55	72 58	73 61	74 64	76 66	77 69	78 73	80 76	81 79	82 82	83	84 8 89 9	6 8	88	3	
T		pei			es	89	-20	-4	6	13	3 18	3 2	3 27	30	34	37	40	42	44	47	49	51	53	55	57	58	60	62	63	65	67	68	70	71	73	74	75	77	78	79	81	82	83	84 8	5 8			
•		to					-31 1	3	3	10) 16	6 2	1 25	29	33	36	18 39	41	44	46	48	50	29 52	31 54	34 56	36 58	38 60	40 61	63	45 65	48 66	50 68	53 69	71	72	74	64 75	77	78	73 79	80	82	83	86 8 84 8	9 9: 5 8:	3 96 6 88	,	
		ead A				90	1	2	4	5	7	8	3 10	11	13	15	17	18	20	22	24	26	28	30	32	34	36	39	41	43	46	48	51	53	56	59	61	64	67	70	73	76	79	83 8	6 8	9 93	96	J

1.4 Stability

1.4.1 Measures of Stability

Index	Major Factors	Primary Utility	Application
Davis Stability Index	Lapse rate	Basic measure of stability	Southeast US
Ventilation Index	Mixing height and transport wind	Smoke dispersion	United States
Haines (Lower Atmospheric Stability) Index	Lapse rate and relative humidity	Large fire growth potential	United States
Pasquill Stability Index	Solar radiation, cloud cover and surface wind speed (surface based stability)	Smoke dispersion	SASEM
Lavdas Atmospheric Dispersion Index	Pasquill, mixing height, transport wind	Smoke dispersion and fire growth potential.	Florida


1.4.2 Lower Atmospheric Stability (Haines) Index

The Lower Atmospheric Severity Index (commonly known as the Haines Index) was developed during the 1980s as a fire weather tool to estimate the effect of atmospheric dryness and stability on the growth potential of a wildfire. The goal was to identify typical combinations of humidity and stability and contrast them with combinations of stability and humidity

prevalent during problem fire outbreaks.

Figure 1.4.2-1 Elevation areas in the U.S. for Haines calculation

Stability Term	Moisture Term
(A)	(B)
LOW EL	EVATION
<u>950 – 850 mb °C</u>	<u>950 mb T° C – 950 DP° C</u>
A = 1 when 3°C or less	B = 1 when 5° C or less
A = 2 when 4-7°C	B = 2 when 6-9° C
A = 3 when 8°C or more	B = 3 when 10° C or more
MID ELE	EVATION
<u>850 – 700 mb °C</u>	850 mb T° C – 850 DP° C
A = 1 when 5° C or less	B = 1 when 5° C or less
A = 2 when 6-10°C	B = 2 when 6-12° C
A = 3 when 11°C or more	B = 3 when 13° C or more
HIGH EL	EVATION
<u>700 − 500 mb °C</u>	700 mb T° C – 700 DP° C
A = 1 when 17°C or less	B = 1 when 14° C or less
A = 2 when 18-21°C	B = 2 when 15-20° C
A = 3 when 22°C or more	B = 3 when 21° C or more

Haines Index (A + B)	Potential for Large Fire
2 or 3	Very Low
4	Low
5	Moderate
6	High

Table 1.4.2-1 Components of the Haines Index

1.4.2.1 Haines Index Climatology

- 40 Year (1961-2000) Climatology of Haines Index for North America, http://www.treesearch.fs.fed.us/pubs/33354
- NWS Western Regional Tech Attachment, http://www.wrh.noaa.gov/wrh/97TAs/TA9717/TA97-17.html

1.5 Fire Weather Data

1.5.1 Digital Weather Data

1.5.1.1 Sources of Digital Weather and Fire Records

FAMWEB Fire & Weather Data (https://fam.nwcg.gov/fam-web/) provides access to all archived daily fire weather records for NFDRS stations in the United States, both manual and automated. It also is the source of fire occurrence data for all federal agencies and some state agencies. These files are formatted for easy import into Firefamily Plus.

The Kansas City Fire Access Software (KCFast) interface (https://fam.nwcg.gov/fam-web/kcfast/mnmenu.htm) provides user requested access to archived and current weather records from NFDRS stations in the United States. Hourly records are stored for the most recent years and all daily records archived in the Weather Information Management System (WIMS) are available. Fire occurrence records are available as well. File formats are compatible with Firefamily Plus import.

The **Western Region Climate Center** provides an archive (http://www.wrcc.dri.edu/wraws/) to all Satellite (GOES) enabled RAWS stations. It is the most complete archive of hourly observations for the RAWS network. The interface provides many display alternatives (wind rose, summary tables, frequency distributions and station metadata). The data lister provides for data download of archived data with a user password.

Mesowest (http://mesowest.utah.edu/index.html) provides access to hourly data for a wide variety of weather stations across the United States. With a free user login, up to 365 days of observations may be downloaded at a time, in either excel spreadsheet, comma delimited text, or XML format.

1.5.1.2 Critique and Edit in Firefamily Plus

Firefamily Plus is fire and weather analysis software that is freely available at http://www.firelab.org/project/firefamilyplus and can be used effectively to review and edit archived weather records obtained from the sites listed above. Here are several steps that can help evaluate the weather record for time span, accuracy, and completeness. Once the records are imported:

- 1. Evaluate the Active Working Set for the archive to determine if the record has a <u>sufficient time span</u> (15+ years) for climatological analyses
- 2. Evaluate the <u>completeness</u> of the record by evaluating the data count for the archive. Does the station collect records year round? If not, what period of the year appears to have a relatively complete record?
- 3. Evaluate individual data elements to determine the archive's <u>accuracy</u>. Look for outliers among the basic data observations (Temp, RH, windspeed, precipitation, max & min values) by sorting records in ascending and descending order to locate erroneous values.
- 4. Evaluate data elements and calculated components and indices by displaying climatology graphs (max, min) and individual years to find erroneous trends and outliers.
- 5. Evaluate the wind rose to determine whether the station's wind observations (speeds and directions) are representative of the fire situation being analyzed.

It may be appropriate to edit the records, which can be done in the "View Observations" table. Before changing archived observation, the record in question should be compared to those of surrounding stations. Any changes made, should be documented for the local fire management agency.

1.5.2 FARSITE & FlamMap Weather Inputs

1.5.2.1 Wind (WND) and Weather (WTR) Files

Like the Initial Fuel Moisture File, WND and WTR files are simple space delimited text files that may be edited with a simple text editor. Typically these files include both conditions from the recent past (several days to a week or more) and for forecasted weather (2 days to 1 week input manually from narrative forecasts or formatted files obtained from the National Weather Service at http://www.weather.gov/fire).

<u>In FlamMap and Short Term Fire Behavior (STFB)</u>, these files are used to apply a conditioning period of varying weather conditions that will result in adjusted fuel moisture conditions for each location in the landscape (LCP) file at the end of the conditioning period. <u>In FARSITE and Near Term Fire Behavior (NTFB)</u> these files are used in both the fuel moisture conditioning process and as input weather conditions throughout the analysis period.

For the desktop systems, formatted files of weather observations are generally created in Firefamily Plus data for a selected weather station using **Weather/Hourly Data Analysis/FARSITE Exports**. These files are generally appended with forecast data from one of a variety of sources. One primary source of forecast data is provided by NWS National Digital Forecast Database (NDFD).

The user is responsible for verifying the quality of these weather inputs:

- Ensure the source of the forecast information. In addition to the NWS, other systems of forecast models produce files in these formats. Evaluate the source model(s) and the resolution (grid cell size used to produce them. In areas with local influences, such as elevation and aspect, weather forecast elements may not be sufficiently resolved by a forecast grid of 2.5 or 5 kilometers
- Contents of these files should be reviewed by the incident meteorologist or local fire weather forecaster and/or compared to narrative forecasts and known conditions over the fire area.
- Do not assume that forecast WND/WTR files (or WFDSS weather inputs) are accurate or applicable for the fire analysis area.

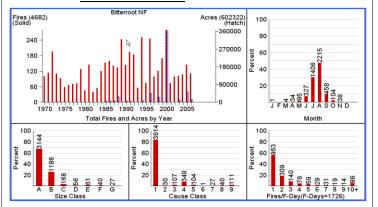
1.5.2.2 Gridded Winds

For many fire managers, visualizing the variability of wind in complex terrain can be difficult. Simplified rules and guidelines have been outlined in Section 1.2, however, WindNinja is a freely available wind modeling software tool that is available for download at http://www.firelab.org/project/windninja. Though not as sophisticated as other models that incorporate "fluid dynamics", it is fast, simple to use, requires relatively few inputs, and produces a variety of graphic outputs.

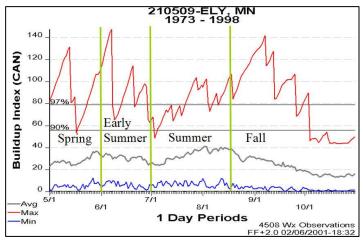
In addition to the software, the user needs:

- Elevation Data, in the form of an ASCII Raster file. Readily available fire modeling landscape (lcp) flies are accepted by the program as source of this information.
- One (or several) "domain-mean" initial windspeed(s), either forecast or retrospective, that represents an average for the area being analyzed. This may be provided by NWS NDFD gridded winds.
- General characterization of the dominant vegetation or surface roughness.

The program provides outputs in three formats, a *Google Earth kmz* file format, a *FARSITE/FlamMap ascii grid (asc)* file format, and an *ArcGIS shapefile* format.

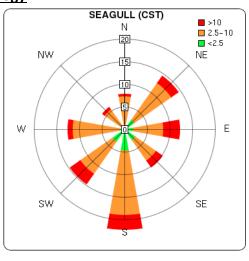

The user should verify the appropriateness for each grid file output. In complex terrain, one way would be to compare ridgetop winds produced in the grid with forecast or observed ridgetop winds for the fire area.

1.6 Fire Season Climatology

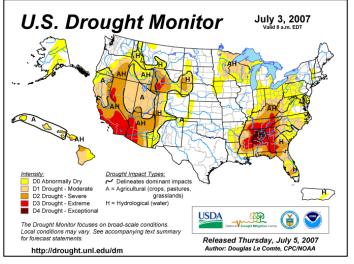

1.6.1 Seasonal Trends

Local Fire Season Climatology

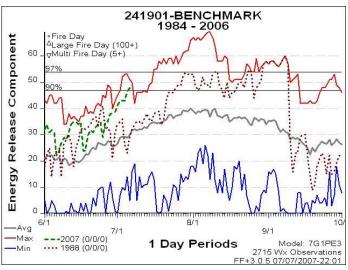
• Evaluate Fire Occurrence Patterns


- Use Appropriate Fire Potential Indicators ERC, BUI
- <u>Identify Seasonal Trend</u> Season Start, Peak Period(s), shoulder Seasons, <u>Season End</u>

Winds Climatology


Wind roses are available in Firefamily Plus, wrcc.dri.edu, and in other tools. Insure it includes only relevant winds (for example – exclude other seasons, night time winds,

etc.)



Compare current trends to historic normal/extremes

 General Trends, such as the US Drought Monitor depict current conditions spatially, using a combination of indices and human interpretation

<u>Current local conditions</u> can be displayed in the context of historic trends

This Firefamily Plus graphic includes historic maximum (red), average (gray), current year (2007, dash), & analog (1988, dot).

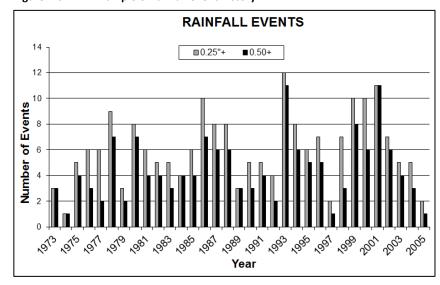
 <u>Consult with local managers</u> and experts to evaluate the objective analysis and to identify any local anomalies that may not be apparent.

1.6.2 Climatology of Weather that Slows or Stops Fire Growth

Fire Stopping Events:

1. Weather & Climatology (Final June 17, 2014)

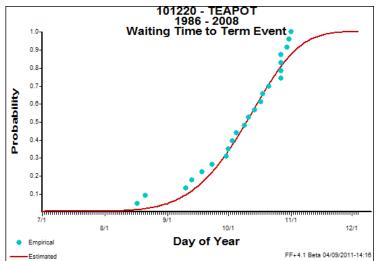
Originally reported by Latham and Rothermel (1993) from opinions of persons familiar with fire and fire weather in the Northern Rockies, example criteria was suggested as 0.5 inches of rain accumulated in 5 days or less. However, other fire potential indicators, such as cloud cover and relative humidity, can help identify periods of continuous low- or no-spread days during a fire season in a locality. These discrete events may not signal the end of the fire or the season. As such, it may be just as important to identify the **frequency** with which they occur and the **duration** of their influence as it is to predict a **waiting time** for the next event.


Fire/Season Ending Date

It is possible to identify the date in a fire season when fire growth is no longer likely or possible. This is generally understood to be the season end. If a fire's threat to values of concern is more imminent or it is early in the fire season, a prediction of the season end may be less important than suggesting if and when a weather event will put the fire out. In bimodal seasons, such as the spring seasons in the southwest and the lake states, weather criteria can suggest fire ending dates in the early "season", even though fire potential is expected to rise again in subsequent periods. Anticipating this date may be critical to strategic decisions as the season end approaches.

Figure 1.6.2.1-1 Example of rainfall event history

1.6.2.1 Event Frequency and Duration


As suggested above and depicted here, it may be valuable to identify the frequency of fire slowing or stopping events, especially if they are more common, such as in the eastern US. Firefamily Plus Event Locator can be used to evaluate data from a local RAWS station. It is also possible to graph precipitation event probability by duration or quantity for the NWS Cooperative Observer Network at the Western Region Climate Center (http://www.wrcc.dri.edu/sod/arch/index.html)

1.6.2.2 TERM Waiting Time Distribution

Firefamily Plus (version 4.1) includes a "TERM" tool (in the Weather menu) to produce a waiting time distribution of historic fire- or season-ending dates. For each year evaluated, a single date is selected as the ending date based on established criteria. These dates are recorded and the distribution plotted to estimate the probability that the fire or season will end by a specific date.

1.6.3 Forecast and Outlook Products

1.6.3.1 National Weather Service Fire Weather Page (http://www.weather.gov/fire)

1.6.3.2 NOAA NWS Weather Forecast Office

- National Digital Forecast Database is the basis for all Weather Forecast Office (WFO) forecast products.
 With forecasts for each hour over the 36 hour period, graphs, tables, and narrative products are all derived automatically and reviewed by on-duty forecasters.
- Fire Weather Planning Forecast (http://www.nws.noaa.gov/view/validProds.php?prod=FWF) is produced by the local WFO and includes detailed forecast for the next 36 hours and more general outlook for days 3-8. The format is somewhat standardized across the United States
- Fire Weather Watch / Red Flag Warning (http://www.nws.noaa.gov/view/validProds.php?prod=RFW) are produced to identify extreme fire weather conditions (according to operating plan definition) that are expected in the next 24 hours (Watch) or are expected in the current forecast period (Warning).
- Spot Weather Forecasts are produced by WFO fire weather forecasters based on requests and information for specific locations provided by fire managers. These forecasts are generally limited to today, tonight, & tomorrow.
- Incident Fire Weather Forecasts are produced by incident meteorologists for each operational period.
- NFDRS Point Forecast (http://www.nws.noaa.gov/view/validProds.php?prod=FWM) is produced for an active RAWS location after the current daily (1300 LST) observation is received at the WFO. It is based on the NDFD grid forecast for the corresponding grid cell and calibrated to the reported RAWS observation.
- Activity Planner is a tool that allows the user to specify weather parameters from which future forecast periods can be identified that meet those parameters.

1.6.3.3 *Predictive Services Outlooks (*http://www.predictiveservices.nifc.gov/outlooks/outlooks.htm)

- The National Incident Coordination Center (NICC) and all regional predictive service offices produce both seasonal (issue date varies) and monthly (issued at the beginning of each month) fire potential forecasts.
- Daily Fire Weather and/or Fire Behavior Outlooks are generally include information and are formatted to the specific needs of responsible fire management agencies within the predictive service region.
- 7 Day Fire Potential products provide forecast assessments of fuel dryness, high risk days, and ignition triggers for climatological/fire management units within the predictive service region. It generally includes supporting narrative and calls to action.
- Multi-Media Briefings are available on a regular basis from each predictive service office.

1.6.3.4 NOAA NWS Storm Prediction Center (http://www.spc.noaa.gov/)

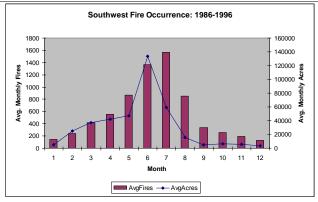
- Fire Weather Outlooks are produced for day 1, day 2, and day 3-8. They identify critical and extremely critical areas for wind and RH, and critical areas for dry thunderstorms
- Convective and Thunderstorm Outlooks are produced for day 1, day 2, and day 3-8. Three separate risk
 areas (slight, moderate, and high) are used to describe the expected coverage and intensity for the
 categorical severe weather threat on days 1-3 along with severe weather probabilities for the potential
 threat.

1.6.3.5 NOAA NWS Climate Prediction Center (http://www.cpc.ncep.noaa.gov/)

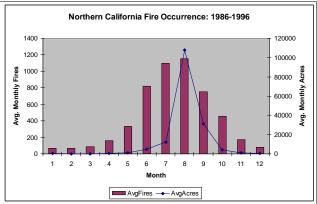
- Probabilistic Temperature and Precipitation Outlooks are produced for Day 6-10 (updated daily), Day 8-14 (updated daily), the next month (produced mid-month) and upcoming 3 month (updated mid-month) periods.
- Drought Monitor and Associated Forecasts (http://droughtmonitor.unl.edu/) are updated and released each Thursday at 0700 Eastern Time.

1.6.4 Regional Fire Seasonality (Fire Occurrence by Month)

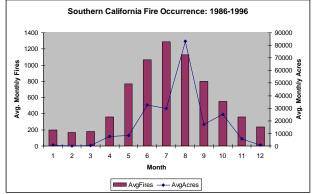
The basic climate/weather factors that define fire season are temperature (hot vs. cold), atmospheric moisture (dry vs. moist), and wind patterns. All of these factors affect the fuels conditions and the tendency for fires to start and spread. Climatologic fire season characteristics are driven by seasonal and continental-scale weather patterns, their movement, and variation. In essence, seasonal air mass and jet stream changes affect various regions at different times and in different ways. The 'fire season' shifts around the country with these changes.



Northwest

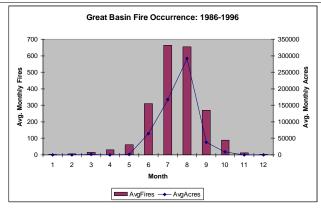

Northwest Fire Occurrence: 1986-1996 140000 1400 120000 1200 100000 🖁 1000 80000 800 60000 600 Avg. 40000 400 20000 6 7 8 9 10 11 AvgFires - AvgAcres

- Fire activity peaks in summer due to increasingly warm & dry conditions and potential for wind and lightning with dry cold frontal passages.
- Rapid decrease in activity in fall with Pacific moisture on the increase, though this the peak period for dry offshore wind events and a few dry cold front passages are still possible.

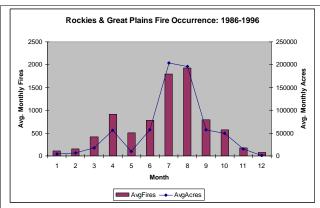


- Fire activity increases in spring as it transitions from windy & dry to hot & dry
- Peak from May mid-July, with monsoon thereafter
- Rare secondary fall season as moisture exits and jet drops south & wind event potential returns

- Fire activity peaks in summer due to increasingly warm & dry conditions and potential for wind and lightning with infrequent dry cold frontal passages.
- Rapid decrease in activity by late fall with Pacific moisture on the increase, though peak period for dry northeast wind events.

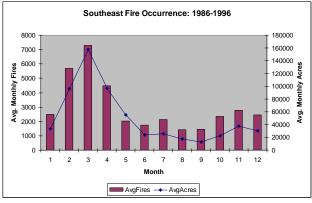


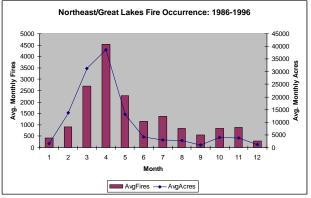
- Fire activity peaks late spring through fall, when influence of maritime air is diminished.
- Greatest potential for offshore wind events in the fall, when fuels are often driest.
- Fires possible any time with offshore wind events.


Southern California

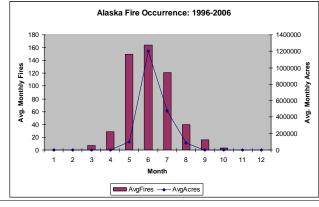
California

Table 1.6.4-1 (cont) Regional fire seasonality


 Almost exclusively in the summer, fire season is dependent on cured fine fuels and windy/dry conditions


- Fire activity on the plains peaks in spring and fall when windy/dry periods are coincident with dormant or cured fine fuels.
- Fire activity in the mountains peaks in the summer, when it's warmest and driest and some dry cold frontal passages are possible.

Great Basin



- Fire activity maxima in late winter / early spring and fall, coincident with greatest potential for windy/dry conditions behind passing storm systems
- Dormant fine fuels with low live fuel moisture in winter & spring, leaf-off in fall in northern portion of region
- Season can extend year round anytime warm/moist air becomes suppressed south & east

- Fire activity maxima in spring and fall, coincident with windy periods near jet stream
- Building warmth and dormant fine fuels in spring, leaf-off in fall
- Season can extend well into summer far north if jet remains active and brings windy/dry events that are preceded by prolonged dry conditions

Alaska

- Peak fire activity late spring & summer coincident with warmest/driest conditions, and wind event & dry lightning potential
- Vast majority of activity in interior between Alaska and Brooks ranges
- Season ramps up fairly quickly after melt-off and strongly relates to length of day
- Season ends quickly with late summer/early fall moisture increase

Alaska

Rockies

20

Great

Plains

Northeast,

'Great Lakes

1.6.5 Critical Fire Weather Patterns (from www.fs.fed.us/pnw/pubs/pnw_gtr854.pdf)

The four critical weather elements that produce extreme fire behavior are low relative humidity, strong surface wind, unstable air, and drought. [The] Critical fire weather patterns [that support these conditions] can be separated into two primary categories; those that produce strong surface winds and those that produce atmospheric instability. In both cases, an unusually dry air mass, for the region and season, must also occur. In brush and timber fuels, drought becomes an important precursor, by increasing fuel availability.

Most periods of critical fire weather occur in transition zones between high- and low-pressure systems, both at the surface and in the upper air. The surface pressure patterns of most concern are those associated with cold fronts and terrain-induced foehn winds. Cold front passages are important to firefighters because of strong, shifting winds and unstable air that can enhance the smoke column or produce thunderstorms. Foehn winds occur on the lee side of mountain ranges and are typically very strong, often occurring suddenly with drastic warming and drying. The area between the upper ridge and upper trough has the most critical upper air pattern because of unstable air and strong winds aloft that descend to ground level.

East of the Rocky Mountains, most critical fire weather patterns are associated with the periphery of high-pressure areas, particularly in the prefrontal and postfrontal areas.

- In the northern plains, Great Lakes, and the Northeastern US, prefrontal high pressure from the Pacific, Northwestern Canada, and Hudson Bay all can produce very dry conditions. Cold fronts produce relatively short lived periods of high winds and instability that can produce extreme fire behavior.
- In the Southeastern US, drought is frequently associated with the La Niña state of the southern oscillation pattern or a blocking ridge aloft near the Atlantic coast. Often critical weather patterns follow the frontal passage that brings extremely dry air due to a strong westerly or northwesterly flow. Look for strong winds that accompany the flow. Beware of advancing tropical storms as well.

In the **Southwestern US**, the breakdown of the upper ridge manifest at the surface as surface, dry cold fronts before the onset of the monsoon. Early stage monsoon can produce gusty wind, low RH, and lightning without

much precipitation. In advance of approaching upper level troughs, the lee surface trough/dryline results in very low relative humidity and rapidly drying fuel with windy conditions that can follow for hours until the cold front passes.

In the *Rocky Mountain and Intermountain Regions*, the most significant pattern is the Upper ridge-Surface thermal trough that produces a dry and windy surface cold front.

- Along the eastern slopes of the Rocky Mountains, weather patterns producing Chinook winds bring strong downslope winds that are unusually dry and warm.
- In the intermountain West, critical fire weather is associated with upper troughs and overhead jet streams, or surface dry cold front passages.

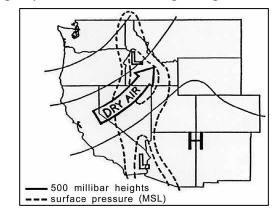


Figure 1.6.5-1 Critical fire weather pattern map

Along the Pacific Coast, from Washington to California, weather patterns producing offshore flow or foehn wind are the most important.

- In the Pacific Northwest, the east wind produces strong winds and dry air west of the cascades. The upper ridge breakdown is similar to that described for the Rocky Mountain & interior west.
- In California, the most important are the north and mono winds of north & central regions and the Santa Ana and sundowner winds of southern California. The subtropical high aloft bring heat waves.

In *Alaska*, the primary pattern is the breakdown of the upper ridge with a southwest flow. It can bring gusty winds and dry lightning to the interior of Alaska after a period of hot, dry weather.

1.7 Reference

Haines, D.A. 1988. A lower atmospheric severity index for wildland fire. National Weather Digest. Vol 13. No. 2:23-27.

Latham, Don J. and Rothermel, Richard C,; **Probability of Fire-Stopping Precipitation Events**; 1993; USDA Forest Service, Research Note INT-410; 8p.

Schroeder, Mark J. and Buck, Charles C., 1970. **Fire Weather: A Guide For Application of Meteorological Information to Forest Fire Control Operations**, USDA Forest Service Agricultural Handbook 360, pp. 85-126.

Werth, Paul and Ochoa, Richard; <u>The Haines Index and Idaho Wildfire Growth</u>; 1990; Fire Management Notes; 51-4.

Werth, John and Werth, Paul; <u>Haines Index Climatology for the Western United States</u>; 1997; NOAA National Weather Service Western Region Technical Attachment No. 97-17.

Werth, Paul A.; Potter, Brian E.; Clements, Craig B.; Finney, Mark A.; Goodrick, Scott L.; Alexander, Martin E.; Cruz, Miguel G.; Forthofer, Jason A.; McAllister, Sara S. 2011. Synthesis of knowledge of extreme fire behavior: volume I for fire managers. Gen. Tech. Rep. PNW-GTR-854. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station. 144 p.

Whiteman, C. David, 2000. **Mountain Meteorology: Fundamentals and Applications**, Oxford University Press, pp. 141-199, 306-307.

2 Fuels

2.1 SURFACE FUEL MODELS

2.1.1 Carrier Fuel Types

Non-burnable (NB) fuels

- **NB1 (091) URBAN/SUBURBAN**; Fuel model NB1 consists of land covered by urban and suburban development. To be called NB1, the area under consideration must not support wildland fire spread. In some cases, areas mapped as NB1 may experience structural fire losses during a wildland fire incident; however, structure ignition in those cases is either house-to-house or by firebrands, neither of which is directly modeled using fire behavior fuel models. If sufficient inflammable vegetation surrounds structures such that wildland fire spread is possible, then choose a fuel model appropriate for the wildland vegetation rather than NB1.
- NB2 (092) SNOW/ICE; Land covered by permanent snow or ice is included in NB2. Areas covered by seasonal snow can be mapped to two different fuel models: NB2 for use when snow-covered and another for use in the fire season.
- NB3 (093) AGRICULTURAL FIELD; Fuel model NB3 is agricultural land maintained in a non-burnable condition; examples include irrigated annual crops, mowed or tilled orchards, and so forth. However, there are many agricultural areas that are not kept in a non-burnable condition. For example, grass is often allowed to grow beneath vines or orchard trees, and wheat or similar crops are allowed to cure before harvest; in those cases use a fuel model other than NB3.
- NB8 (098) OPEN WATER; Land covered by open bodies of water such as lakes, rivers and oceans.
- **NB9 (099) BARE GROUND;** Land devoid of enough fuel to support wildland fire spread is covered by fuel model NB9. Such areas may include gravel pits, arid deserts with little vegetation, sand dunes, rock outcroppings, beaches, and so forth.

<u>Grass (GR) Fuels - The primary carrier of fire in the GR fuel models is grass.</u> Grass fuels can vary from heavily grazed grass stubble or sparse natural grass to dense grass more than 6 feet tall. Fire behavior varies from moderate spread rate and low flame length in the sparse grass to extreme spread rate and flame length in the tall grass models. While the FB fuel models are static, all of the GR fuel models are dynamic, meaning that their live herbaceous fuel load shifts from live to dead as a function of live herbaceous moisture content. The effect of live herbaceous moisture content on spread rate and intensity is very strong.

<u>Grass/Shrub</u> (GS) Fuels - The primary carrier of fire in the GS fuel models is grass and shrubs combined; both components are important in determining fire behavior. All GS fuel models are dynamic, meaning that their live herbaceous fuel load shifts from live to dead as a function of live herbaceous moisture content. The effect of live herbaceous moisture content on spread rate and intensity is strong, and depends on the relative amount of grass and shrub load in the fuel model.

<u>Shrub (SH)</u> Fuels - The primary carrier of fire in the shrub fuel models is live and dead shrub twigs and foliage in combination with dead and down shrub litter. Fuel models SH1 and SH9 are dynamic, due to a small amount of herbaceous fuel loading in them. The effect of live herbaceous load transfer to dead fine fuel on spread rate and flame length can be significant in those two dynamic SH models.

<u>Timber Understory</u> (TU) Fuels - The primary carrier of fire in the TU fuel models is forest litter in combination with herbaceous or shrub fuels. TU1 and TU3 contain live herbaceous load and are dynamic, meaning that their

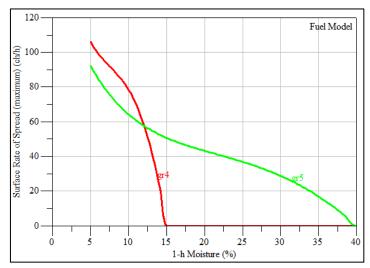
live herbaceous fuel load is allocated between live and dead as a function of live herbaceous moisture content. The effect of live herbaceous moisture content on spread rate and intensity is strong, and depends on the relative amount of grass and shrub load in the fuel model.

<u>Timber Litter (TL) Fuels</u> - The primary carrier of fire in the TL fuel models is dead and down woody fuel. Live fuel, if present, has little effect on fire behavior.

<u>Slash/Blow down</u> **(SB)** <u>Fuels</u> - The primary carrier of fire in the SB fuel models is activity fuel or blow down. Forested areas with heavy mortality may be modeled with SB fuel models.

2.1.2 Do 13 and 40 Equal 53?

This guide integrates the original 13 models with the 40 standard models added in June of 2005. Though the developers of the 40 standard models intended that they stand alone, all 53 models are available to the user in current versions of all the fire modeling systems that are designed to use them. And though the original 13 models were grouped into only 4 carrier types, they can be effectively distributed into the 6 types defined with the newer set.


Consider the objectives that guided the development of these two sets. The original 13 were designed to support analysis of wildfires under peak fire conditions with cured herbaceous fuels. Sensitivity to live fuels is represented in only 5 of them, with large responses predominately in fuel models 4 and 5. They were designed before crown fire modeling was implemented, requiring that at least some of the 13 represent crown fire behavior. On the other hand, the 40 standard fuel models were developed to facilitate analysis for fire use and fuel modification treatments. They are designed so that they can represent green, growing season conditions as well as cured, peak season conditions.

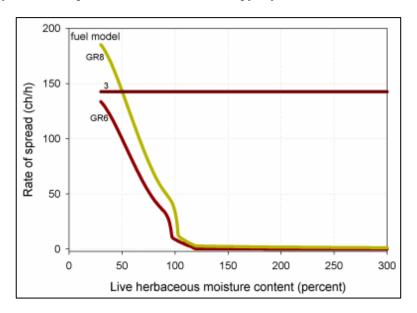
The most important benefit of integrating fuel model sets in this guide may be the context the original 13 provide for users familiar with them. Consider it something of a dual language guide, facilitating translation for those users.

2.1.3 Moisture of Extinction

When selecting a fuel model, one of the first considerations should be whether fuels are expected to burn under high fuel moisture conditions. Though many modeling tools allow the user to define a burn period which can truncate fire behavior even when moisture of extinction has not been reached, humid climate fuel models (with high moisture of extinction) will express significant fire behavior even when corresponding dry climate fuels estimate no fire spread. The example here demonstrates that GR4 exhibits no fire spread at 15% fuel moisture and at that same point, GR5 can project spread rates of as much as 50 ch/hr. Ensure that the fuel model selected accurately represents potential fire spread and intensity under the range of fuel moistures conditions that will be encountered.

Figure 2.1.3-1 Moisture of extinction in fuel models GR4 and

2.1.4 Fuel Model Parameters and Descriptions

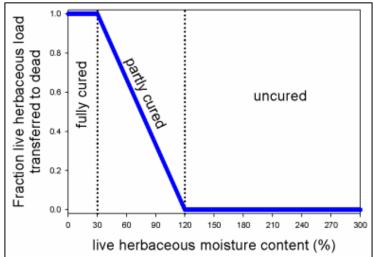

To insure accuracy and precision in modeling efforts, fuel model selection needs to employ a disciplined process. With the addition of 40 fuel models representing 6 carrier fuel types, users will be more likely to find an appropriate fuel model based on fuel model parameters, resulting in reasonable ranges of fire behavior over the range of anticipated environmental conditions. Identifying fuel models that best answer these questions should result in one to several choices that can be carried forward into a calibration process.

- 1. Looking at the fuel bed, what fuel type (GR, GS, SH, TU, TL, or SB) is observed (or expected) to carry fire spread? Keep in mind that there are analogous characteristics that can cross these fuel types. However, if your fuelbed has a significant canopy layer, it may be more descriptive to select a TU or TL fuel.
- 2. Which fuel categories (1hr, 10hr, 100hr, Herb, Woody) are observed (or expected) to be available for burning in the flaming front under anticipated range of environmental conditions? Does one (or several) represent the distribution of fuel loads better than another?

- 3. Is it a shallow or deep fuelbed? Will any shrub layer burn as part of the surface or canopy layer?
- 4. Is the fuel model description a reasonable description of conditions encountered?

2.1.5 Dynamic (proportional) Fuel Load Transfer

A feature that was implemented with the development of the National Fire Danger Rating System (NFDRS) recognizes that most herbaceous fuels transition between green and cured conditions over the course of a fire season. Effectively, this transfer of herbaceous fuel loads between live and dead categories redefines the fuel complex with each proportion transferred, making it a critical fuel model characteristic. The changes in output fire behavior can be dramatic, when compared to the static fuel models among the original 13. The



example here shows spread rate for dynamic fuels GR6 & GR8 with static FB3.

In the development of the new set of fuel models, this "dynamic" (or proportional) fuel load transfer has been implemented for all fuel models that include herbaceous loads. It includes all grass, grass/shrub, two shrub (SH1 & SH9), and two timber understory (TU1 & TU3) models.

As depicted in the graph and table below, the fuel load transfer (implemented in FARSITE, FLAMMAP, and WFDSS Fire Behavior tools) is dependent on the input herbaceous moisture content.

Herbaceous Level of Curing
Moisture Content (fuel load transferred)

Moisture Content	(fuel load	d transferred)
120% or more	0/1 cured	Uncured
98%	1/4 cured	Partially cured
90%	1/3 cured	Partially cured
75%	½ cured	Partially cured
60%	2/3 cured	Partially cured
53%	¾ cured	Partially cured
30% or less	1/1 cured	Fully cured

- If input Live Herbaceous Moisture Content (LHMC) is 120% or higher, none of the load is transferred.
- If input LHMC is 30% or lower, the entire load is transferred to dead herbaceous fuel and the 1hr moisture content is assigned to it.
- If input LHMC is between 30% and 120%, part of the herbaceous load is transferred to dead load and is assigned the 1hr moisture content. The input LHMC that represents a particular portion of the load transferred from live to dead can be calculated using this equation and an assumed curing percentage:

input LHMC =
$$120 - (90 * fraction cured)$$
.

Important cautions: Between 95% and 100% input LHMC, very rapid changes in fire behavior outputs can occur. Be sure to test the sensitivity to this input. Though it is agreed that live fuels can provide a critical influence on fire behavior, serving as both the heat sink and heat source in varying combinations, the specifics are not well modeled or understood. There are findings that indicate that curing is not directly related to herbaceous moisture content. As a result, BehavePlus allows the user to input curing % separate from LHMC.

2.1.6 Fuel Model Fire Behavior Calibration

The final step in selecting a fuel model is evaluation of the fire behavior outputs, rate of spread and flame length. Ultimately, the primary value of these fuel models is their use in making fire behavior and fire growth projections. However, making a good fuel model selection is only the first step in the calibration process.

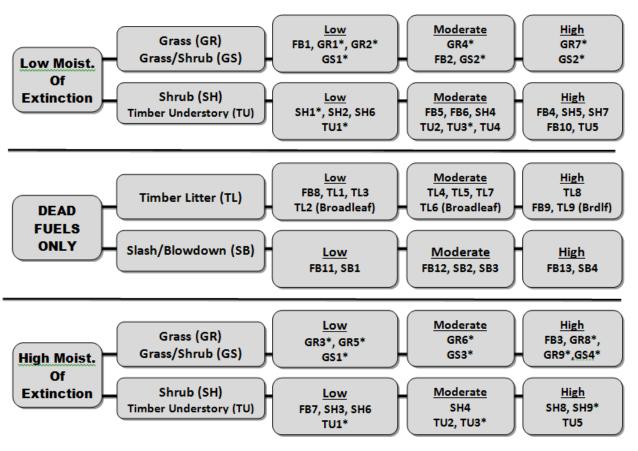
As suggested here, when comparing modeled and observed fire behavior, it may be helpful to think of spread rates and flame lengths in ranges or Fire Behavior Classes. If fireline personnel can effectively report observed fire behavior in these terms, differentiating what they see

Table 2.1.6-1 Fire behavior classes

Fire Behavior Class	Rate of Spread (ch/hr)	Flame Length (ft)
Very Low	0-2	0-1
Low	2-5	1-4
Moderate	5-20	4-8
High	20-50	8-12
Very High	50-150	12-25
Extreme	150+	25+

through the burn period and as environmental inputs change, the analysis will be improved dramatically.

Testing the range of a fuel model's characteristic fire behavior requires analysis of several environmental inputs. Consider these. Most analysis tools only allow consideration of two variables at a time. However, there are generally at least 3 significant environmental factors in addition to fuel selection; wind, slope, and fuel moisture. Fortunately the Rothermel fire spread model depicts the effect of slope as an equivalent windspeed. If the calibration analysis represents the windspeed as a range of effective windspeed, slope should be at least generally incorporated. In some cases, it may still be necessary to consider its effect separately.


- 1. <u>1hr Moisture & Effective Windspeed</u>: The dominant factors in any analysis are wind, slope, and fuel moisture. None of the tools mentioned earlier allow display of all three factors at once. But once a range of expected midflame windspeeds is established, it is possible to add the effect of slope by identifying the slope equivalent windspeed, producing a range of effective windspeeds for the calibration analysis.
- 2. <u>Live Herbaceous Moisture:</u> With other environmental inputs set at representative levels, evaluate the range of fire behavior produced between 30% and 120% live herbaceous fuel moisture for dynamic fuel models.
- 3. <u>Live Woody Moisture:</u> This consideration is critical for grass/shrub, shrub, and timber understory fuel models. Because there is no fuel load transfer in the live woody category, there is no default range to consider. Set other environmental inputs at representative levels. Keep in mind that live woody moisture levels change rather slowly in most cases. Depending on the time of year and the drought situation, it may not be necessary to consider a wide range of moistures. However, it is critical that appropriate levels are identified for the analysis.
- 4. <u>Slope and Spread Direction:</u> Though this combination of factors is probably secondary in most cases, backing and flanking fire behavior related to slope reversals and prescribed fire ignitions may be important.

2.1.7 Nomenclature

Fuel Type	Fuel Model Bloc	Pre-Defined	Reserved for future pre-defined models	Available for Custom fuel Models
FB	01-13	01-13	N/A	N/A
Custom	14-89	N/A	N/A	14-89
NB	90-99	91-93, 98-99	94, 95	90, 96, 97
GR	100-119	101-109	110-112 _T	able 2.1.7-1 Fuel model
GS	120-139	121-124	125-130	120, 131-139

SH	140-159	141-149	150-152	140, 153-159
TU	160-179	161-165	166-170	160, 171-179
TL	180-199	181-189	190-192	180, 193-199
SB	200-219	201-204	205-210	200, 211-219
Custom	220-256	N/A	N/A	220-256

2.1.8 Surface Fuel Model Selection Guide (*Dynamic Fuel Model)

2.1.9 Grass & Grass-Shrub Fuel Model Table

(fuels in shaded rows: dynamic transfer of herb fuel load from live to dead)

Table 2.1.9-1 Grass and Grass-shrub fuel

Carrier	FM#	FM	Fuel Model Name	Wind	1hr	10hr	100hr	Herb	Woody	Total	1hr	Herb	Woody	Bed	Moist	Dead	Live
		Code		Adj	Load	Load	Load	Load	Load	Load	SAV	SAV	SAV	Depth	Extinct	Heat	Heat
GR	1	FB1	Short grass	0.36	0.7	ry Clin	nate Fu	IVIO	ieis 	0.7	3500			1.0	12	8000	
GR	2	FB2	Timber grass and understory	0.36	2.0	1.0	0.5	0.5		4.0	3000	1500		1.0	15	8000	8000
GR	101	GR1	Short, sparse dry climate grass	0.31	0.1			0.3		0.4	2200	2000		0.4	15	8000	8000
GR	102	GR2	Low load dry climate grass	0.36	0.1	1	1	1.0	1	1.1	2000	1800	-	1.0	15	8000	8000
GR	104	GR4	Moderate load dry climate grass	0.42	0.3	1	-	1.9		2.2	2000	1800		2.0	15	8000	8000
GR	107	GR7	High load dry climate grass	0.46	1.0	1	-	5.4	-	6.4	2000	1800		3.0	15	8000	8000
GS	121	GS1	low load dry climate grass-shrub	0.35	0.2	1	-	0.5	0.7	1.4	2000	1800	1800	0.9	15	8000	8000
GS	122	GS2	moderate load dry climate grass-shrub	0.39	0.5	0.5		0.6	1.0	2.6	2000	1800	1800	1.5	15	8000	8000
					Hu	mid Cl	imate l	uel M	odels								
GR	3	FB3	tall grass	0.44	3.0					3.0	1500			2.5	25	8000	
GR	103	GR3	Low load very coarse humid climate grass	0.42	0.1	0.4		1.5		2.0	1500	1300		2.0	30	8000	8000
GR	105	GR5	low load humid climate grass	0.39	0.4			2.5		2.9	1800	1600		1.5	40	8000	8000
GR	106	GR6	moderate load humid climate grass	0.39	0.1	1	1	3.4	1	3.5	2200	2000	I	1.5	40	9000	9000
GR	108	GR8	High load very coarse humid climate grass	0.49	0.5	1.0	1	7.3	-	8.8	1500	1300		4.0	30	8000	8000
GR	109	GR9	very high load humid climate grass	0.52	1.0	1.0		9.0		11.0	1800	1600		5.0	40	8000	8000
GS	123	GS3	moderate load humid climate grass-shrub	0.41	0.3	0.3		1.5	1.3	3.3	1800	1600	1600	1.8	40	8000	8000
GS	124	GS4	high load humid climate grass-shrub	0.42	1.9	0.3	0.1	3.4	7.1	12.8	1800	1600	1600	2.1	40	8000	8000

2.1.10 Grass & Grass-Shrub Fuel Model Descriptions

(fuels in shaded rows: dynamic transfer of herb fuel load from live to dead)

Table 2.1.10-1 Grass and Grass-shrub fuel model

Dry Climate Grass & Grass - Shrub Fuel Descriptions

FB1 (01): Fire spread is governed by the fine herbaceous fuels that are cured or nearly cured. Fires move rapidly through cured grass & associated material. Very little shrub or timber is present, generally less than one-third of the area. Grasslands & savanna are represented along with stubble, grass tundra, & grass-shrub combinations that meet the above area constraint. Annual & perennial grasses are included fuels.

FB2 (02): Fire spread is primarily through the fine herbaceous fuels, either curing or dead. These are surface fires where the herbaceous material, besides litter and dead-down stem wood from the open shrub or timber overstory, contribute to the fire intensity. Open shrub lands and pine stands or scrub oak stands that cover one-third or two thirds of the area may generally fit this model, but may include clumps of fuels that generate higher intensities and may produce firebrands. Some pinyon-juniper may be in this model.

GR1 (101): The primary carrier of fire is sparse grass, though small amounts of fine dead fuel may be present. The grass in GR1 is generally short, either naturally or by heavy grazing, and may be sparse or discontinuous. The moisture of extinction of GR1 is indicative of a dry climate fuelbed, but GR1 may also be applied in high-extinction moisture fuelbeds, because in both cases predicted spread rate and flame length are low compared to other GR models

GR2 (102): The primary carrier of fire is grass, though small amounts of fine dead fuel may be present. Load is greater than GR1, and fuelbed may be more continuous. Shrubs, if present, do not affect fire behavior.

GR4 (104): The primary carrier of fire is continuous, dry-climate grass. Load and depth are greater than GR2; fuelbed depth is about 2 feet.

GR7 (107): The primary carrier of fire is continuous dry-climate grass. Load and depth are greater than GR4. Grass is about 3 feet tall.

GS1 (121): The primary carrier of fire is grass and shrubs combined. Shrubs are about 1 foot high, grass load is low. Spread rate is moderate; flame length low.

Humid Climate Grass & Grass Shrub Fuel Descriptions

FB3 (03): Fires in this fuel are the most intense of the grass group and display high rates of spread under the influence of wind. The fire may be driven into the upper heights of the grass stand by the wind and cross standing water. Stands are tall, averaging about 3 ft., but may vary considerably. Approximately one-third or more of the stand is considered dead or cured and maintains the fire. Wild or cultivated grains that have not been harvested can be considered similar to tall prairie and marshland grasses.

GR3 (103): The primary carrier of fire is continuous, coarse, humid-climate grass. Grass and herb fuel load is relatively light; fuelbed depth is about 2 feet. Shrubs are not present in significant quantity to affect fire behavior.

GR5 (105): The primary carrier of fire is humid-climate grass. Load is greater than GR3 but depth is lower, about 1-2 feet.

GR6 (106): The primary carrier of fire is continuous humid-climate grass. Load is greater than GR5 but depth is about the same. Grass is less coarse than GR5.

GR8 (108): The primary carrier of fire is continuous, very coarse, humid-climate grass. Load and depth are greater than GR6. Spread rate and flame length can be extreme if grass is fully cured.

GR9 (109): The primary carrier of fire is dense, tall, humid-climate grass. Load and depth are greater than GR8, about 6 feet tall. Spread rate and flame length can be extreme if grass is fully or mostly cured.

GS3 (123): The primary carrier of fire is grass and shrubs combined. Moderate grass/shrub load, average grass/shrub depth less than 2 feet. Spread rate is high; flame length moderate. Moisture of extinction is high.

GS4 (124): The primary carrier of fire is grass and shrubs combined. Heavy grass/shrub load, depth greater than 2 feet. Spread rate high; flame length very high. Moisture of extinction is high.

Moisture of extinction is low.

GS2 (122): The primary carrier of fire is grass and shrubs combined. Shrubs are 1-3 feet high, grass load is moderate. Spread rate is high; flame length moderate. Moisture of extinction is low.

2.1.11 Shrub & Timber Understory Fuel Model Table

(fuels in shaded rows: dynamic transfer of herb fuel load from live to dead)

Table 2.1.11-1 Shrub and Timber understory fuel

Carrier	FM	FM	Fuel Model Name	Wind	1hr	10hr	100hr	Herb	Woody	Total	1hr	Herb	Woody	Bed	Moist	Dead	Live
	#	Code		Adj	Load	Load	Load Climate	Load Fuel I	Load Models	Load	SAV	SAV	SAV	Depth	Extinct	Heat	Heat
SH	4	FB4	chaparral	0.55	5.0	4.0	2.0		5.0	16.0	2000		1500	6	20	8000	8000
SH	5	FB5	brush	0.42	1.0	0.5		1	2.0	3.5	2000	-	1500	2	20	8000	8000
SH	6	FB6	dormant brush	0.44	1.5	2.5	2.0			6.0	1750			2.5	25	8000	
SH	141	SH1	low load dry climate shrub	0.36	0.3	0.3	0.0	0.2	1.3	2.0	2000	1800	1600	1	15	8000	8000
SH	142	SH2	mod. load dry climate shrub	0.36	1.4	2.4	8.0		3.9	8.4	2000		1600	1	15	8000	8000
SH	145	SH5	high load dry climate shrub	0.55	3.6	2.1			2.9	8.6	750		1600	6	15	8000	8000
SH	147	SH7	very high load dry climate shrub	0.55	3.5	5.3	2.2		3.4	14.4	750		1600	6	15	8000	8000
TU	161	TU1	light load dry climate timber-grass-shrub	0.33	0.2	0.9	1.5	0.2	0.9	3.7	2000	1800	1600	0.6	20	8000	8000
TU	164	TU4	dwarf conifer with understory	0.32	4.5				2.0	6.5	2300		2000	0.5	12	8000	8000
TU	165	TU5	very high load dry climate timber-shrub	0.33	4.0	4.0	3.0		3.0	14.0	1500		750	1	25	8000	8000
TU	10	FB10	timber litter and understory	0.36	3.0	2.0	5.0		2.0	12.0	2000		1500	1	25	8000	8000
								te Fue	Models								
SH	7	FB7	southern rough	0.44	1.1	1.9	1.5		0.4	4.9	1750		1500	2.5	40	8000	8000
SH	143	SH3	mod. load humid climate shrub	0.44	0.5	3.0		-	6.2	9.7	1600		1400	2.4	40	8000	8000
SH	144	SH4	low load humid climate timber-shrub	0.46	0.9	1.2	0.2		2.6	4.8	2000		1600	3	30	8000	8000
SH	146	SH6	low load humid climate shrub	0.42	2.9	1.5	-	1	1.4	5.8	750	-	1600	2	30	8000	8000
SH	148	SH8	high load humid climate shrub	0.46	2.1	3.4	0.9	ı	4.4	10.7	750	1	1600	3	40	8000	8000
SH	149	SH9	very high load humid climate shrub	0.50	4.5	2.5	1	1.6	7.0	15.5	750	1800	1500	4.4	40	8000	8000
TU	162	TU2	Moderate load humid climate timber-shrub	0.36	1.0	1.8	1.3	1	0.2	4.2	2000	-	1600	1	30	8000	8000
TU	163	TU3	moderate load humid climate timber-grass-shrub	0.38	1.1	0.2	0.3	0.7	1.1	3.3	1800	1600	1400	1.3	30	8000	8000

2.1.12 Shrub & Timber Understory Fuel Model Descriptions

(fuels in shaded rows: dynamic transfer of herb fuel load from live to dead)

Table 2.1.12-1 Shrub and Timber understory fuel model descriptions

Dry Climate Shrub & Timber Understory Fuel Descriptions

FB4 (04): Fire intensity and fast-spreading fires involve the foliage and live and dead fine woody material in the shrub layer. Besides flammable foliage, there is dead woody material that significantly contributes to fire intensity. Deep litter layer may also confound suppression efforts.

FB5 (05): Primary carrier is litter cast by the shrubs, and the grasses or forbs in the understory. Shrubs are generally not tall, but have nearly total coverage of the area. Young, green stands with no deadwood.

FB6 (06): Fire carries through the shrub layer, requiring at least moderate winds. Fire will drop to the ground at low windspeeds or openings in the stand. The shrubs are older. A broad range of shrub conditions is included here.

<u>SH1 (141):</u> The primary carrier of fire in SH1 is woody shrubs and shrub litter. Low shrub fuel load, fuelbed depth about 1 foot; some grass may be present. Spread rate is very low; flame length very low.

SH2 (142): The primary carrier of fire in SH2 is woody shrubs and shrub litter. Moderate fuel load (higher than SH1), depth about 1 foot, and no grass fuel present. Spread rate is low; flame length low.

SH5 (145): The primary carrier of fire in GS4 is grass and shrubs combined. Heavy grass/shrub load, depth greater than 2 feet. Spread rate very high; flame length very high. Moisture of extinction is high.

<u>SH7 (147):</u> The primary carrier of fire is woody shrubs and shrub litter. Very heavy shrub load, depth 4-6 feet. Spread rate lower than SH5, but flame length similar. Spread rate is high; flame length very high.

FB10 (10): Dead down fuels include greater quantities of 3-inch or larger limbwood resulting from overmaturity or natural events that create a large load of dead material. Crown fire and spotting is more frequent in this fuel situation.

<u>TU1 (161):</u> The primary carrier of fire in is low load of grass and/or shrub with litter. Spread rate is low; flame length low.

TU4 (164): The primary carrier of fire is grass, lichen or moss understory plants. If live woody moisture content is set to 100 percent, this fuel model mimics

Humid Climate Shrub & Timber Understory Fuel Descriptions

FB7 (07): Fires burn through the surface and shrub strata with equal ease and can occur at higher dead fuel moisture contents because of the flammable nature of live foliage and other live material. Stands of shrubs are generally between 2 and 6 ft. high. Palmetto-gallberry understory within pine overstory sites are typical and low pocosins may be represented. Black spruce-shrub combinations in Alaska may also be represented.

SH3 (143): The primary carrier of fire in SH3 is woody shrubs and shrub litter. Moderate shrub load, possibly with pine overstory or herbaceous fuel, fuel bed depth 2-3 feet. Spread rate is low; flame length low.

SH4 (144): The primary carrier of fire in SH4 is woody shrubs and shrub litter. Low to moderate shrub and litter load, possibly with pine overstory, fuel bed depth about 3 feet. Spread rate is high; flame length moderate.

SH6 (146): The primary carrier of fire in SH6 is woody shrubs and shrub litter. Dense shrubs, little or no herbaceous fuel, fuelbed depth about 2 feet. Spread rate is high; flame length high.

SH8 (148): The primary carrier of fire in SH8 is woody shrubs and shrub litter. Dense shrubs, little or no herbaceous fuel, fuelbed depth about 3 feet. Spread rate is high; flame length high.

SH9 (149): The primary carrier of fire in SH9 is woody shrubs and shrub litter. Dense, finely branched shrubs with significant fine dead fuel, about 4-6 feet tall; some herbaceous fuel may be present. Spread rate is high, flame length very high.

<u>TU2 (162):</u> The primary carrier of fire in TU2 is moderate litter load with shrub component. High extinction moisture. Spread rate is moderate; flame length low.

TU3 (163): The primary carrier of fire in TU3 is moderate forest litter with grass and shrub components. Extinction moisture is high. Spread rate is high; flame length moderate.

the behavior of Norum's (1982) empirical calibration for Alaska Black Spruce. Spread rate is moderate; flame length moderate.

TU5 (165): The primary carrier of fire in TU5 is heavy forest litter with a shrub or small tree understory. Spread rate is moderate; flame length moderate.

2.1.13 Timber Litter & Slash/Blowdown Fuel Model Table Table 2.1.13-1 Timber litter and Slash/blowdown fuel models

Carrier	FM#	FM	Fuel Model Name	Wind	1hr	10hr	100hr	Herb	Woody	Total	1hr	Herb	Woody	Bed	Moist	Dead	Live
		Code		Adj	Load	Load Tim	Load	Load er Fuel	Load Models	Load	SAV	SAV	SAV	Depth	Extinct	Heat	Heat
TL	8	FB8	compact timber litter	0.28	1.5	1.0	2.5			5.0	2000			0.2	30	8000	
TL	9	FB9	hardwood litter	0.28	2.9	0.4	0.2			3.5	2500			0.2	25	8000	
TL	181	TL1	Low load compact conifer litter	0.28	1.0	2.2	3.6	1	1	6.8	2000	1	-	0.2	30	8000	
TL	182	TL2	low load broadleaf litter	0.28	1.4	2.3	2.2	1	1	5.9	2000	ŀ	-	0.2	25	8000	
TL	183	TL3	moderate load conifer litter	0.29	0.5	2.2	2.8	1	1	5.5	2000	1	1	0.3	20	8000	
TL	184	TL4	Small downed logs	0.31	0.5	1.5	4.2	1	1	6.2	2000	1	1	0.4	25	8000	
TL	185	TL5	high load conifer litter	0.33	1.2	2.5	4.4	1		8.1	2000	1		0.6	25	8000	
TL	186	TL6	moderate load broadleaf litter	0.29	2.4	1.2	1.2	1	1	4.8	2000	1	1	0.3	25	8000	
TL	187	TL7	Large downed logs	0.31	0.3	1.4	8.1	1	1	9.8	2000	1	1	0.4	25	8000	-
TL	188	TL8	long-needle litter	0.29	5.8	1.4	1.1	1	1	8.3	1800	1	1	0.3	35	8000	
TL	189	TL9	very high load broadleaf litter	0.33	6.7	3.3	4.2			14.1	1800	1		0.6	35	8000	
						Slash	/Blowd	own Fue	el Models								
SB	11	FB11	light slash	0.36	1.5	4.5	5.5			11.5	1500			1.0	15	8000	
SB	12	FB12	medium slash	0.43	4.0	14.0	16.5	-	-	34.6	1500	-		2.3	20	8000	
SB	13	FB13	heavy slash	0.46	7.0	23.0	28.1			58.1	1500			3.0	25	8000	
SB	201	SB1	low load activity fuel	0.36	1.5	3.0	11.0	-		15.5	2000			1.0	25	8000	1
SB	202	SB2	moderate load activity or low load blowdown	0.36	4.5	4.3	4.0	1	1	12.8	2000	ı	-	1.0	25	8000	
SB	203	SB3	high load activity fuel or moderate load blowdown	0.38	5.5	2.8	3.0			11.3	2000			1.2	25	8000	
SB	204	SB4	high load blowdown	0.45	5.3	3.5	5.3			14.0	2000			2.7	25	8000	

2.1.14 Timber Litter & Slash/Blowdown Fuel Model Descriptions

Table 2.1.14-1 Timber litter and slash/blowdown fuel model descriptions

Timber Litter Fuel Descriptions

FB8 (08): Slow-burning ground fires with low flame heights are the rule, although the fire may encounter an occasional "jackpot" or heavy fuel concentration that can flare up. Only under severe weather conditions involving high temperatures, low humidities, and high winds do the fuels pose fire hazards. This layer is mainly needles, leaves, and some twigs since little undergrowth is present in the stand.

FB9 (09): Fire runs through the surface litter faster than FB8 and have higher flame height. Both longneedle conifer & hardwood stands, especially the oakhickory types, are typical. Fall fires in hardwoods are representative, but spotting by rolling and blowing leaves in high winds will actually cause higher rates of spread than predicted. Concentrations of dead-down woody material will contribute to torching & spotting.

TL1 (181): The primary carrier of fire is compact forest litter. Light to moderate load, fuels 1-2 inches deep. May be used to represent a recently burned forest. Spread rate is very low; flame length very low.

TL2 (182): The primary carrier of fire is broadleaf (hardwood) litter. Low load, compact litter. Spread rate is very low; flame length very low.

TL3 (183): The primary carrier of fire is moderate load conifer litter, light load of coarse fuels. Spread rate is very low; flame length low.

TL4 (184): The primary carrier of fire is moderate load of fine litter and coarse fuels. Includes small diameter downed logs. Spread rate is low; flame length low.

<u>TL5 (185):</u> The primary carrier of fire is High load conifer litter; light slash or mortality fuel. Spread rate is low; flame length low.

<u>TL6 (186):</u> The primary carrier of fire is moderate load broadleaf litter, less compact than TL2. Spread rate is moderate; flame length low.

TL7 (187): The primary carrier of fire is heavy load forest litter, includes larger diameter downed logs. Spread rate low; flame length low.

<u>TL8 (188):</u> The primary carrier of fire in is moderate load long-needle pine litter, may include small amount of herbaceous load. Spread rate is moderate; flame length low.

TL9 (189): The primary carrier of fire is very high load, fluffy broadleaf litter. Can also be used to represent heavy needle-drape. Spread rate is moderate; flame length moderate.

Slash Blowdown Fuel Descriptions

FB11 (11): Fires are fairly active in the slash and intermixed herbaceous material. The spacing of the rather light fuel load, shading from overstory, or the aging of the fine fuels can contribute to limiting the fire potential. The less-than-3-inch material load is less than 12 tons per acre. The greater-than-3-inch material is represented by not more than 10 pieces, 4 inches in diameter, along a 50-ft transect.

FB12 (12): Rapidly spreading fires with high intensities capable of generating firebrands can occur. When fire starts, it is generally sustained until a fuel break or change in fuels is encountered. The visual impression is dominated by slash, most of it less than 3 inches in diameter. Fuels total less than 35 tons per acre & seem well distributed.

FB13 (13): Fire is generally carried across the area by a continuous layer of slash. Large quantities of greater-than-3-inch material are present. Active flaming is sustained for long periods and firebrands of various sizes may be generated. These contribute to spotting problems. Situations where the slash still has "red" needles attached but the total load is lighter, more like model 12, can be represented because of the earlier high intensity and quicker area involvement.

SB1 (201): Primary carrier of fire is light dead & down activity fuel. Fine fuel load is 10 to 20 t/ac, weighted toward fuels 1-3 in diameter class, depth is less than 1 foot. Spread rate is moderate; flame length low.

SB2 (202): The primary carrier of fire is moderate dead and down activity fuel or light blowdown. Fine fuel load is 7 to 12 t/ac, evenly distributed across 0-0.25, 0.25-1, and 1-3 inch diameter classes, depth is about 1 foot. Blowdown is scattered, with many trees still standing. Spread rate is moderate; flame length moderate.

SB3 (203): The primary carrier of fire is heavy dead and down activity fuel or moderate blowdown. Fine fuel load is 7 to 12 t/ac, weighted toward 0-0.25 inch diameter class, depth is more than 1 foot. Blowdown is moderate; trees compacted to near the ground. Spread rate is high; flame length high.

<u>SB4 (204):</u> The primary carrier of fire is heavy blowdown fuel. Blowdown is total, fuelbed not compacted, most foliage and fine fuel still attached to blowdown. Spread rate very high; flame length very high.

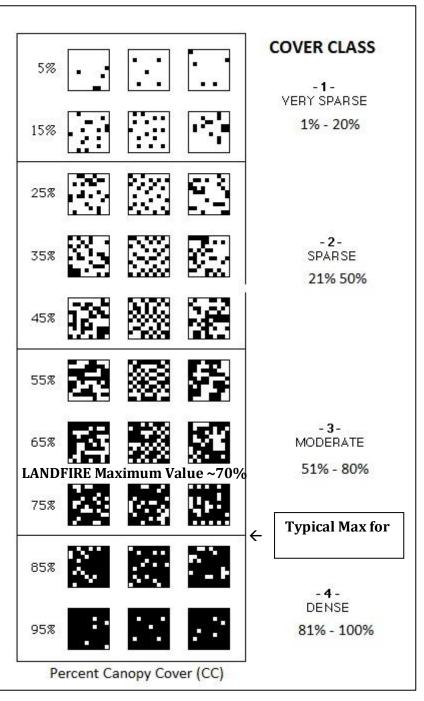
2.2 Canopy Fuel Characteristics

2.2.1 Canopy Cover, % or class

The Forest Canopy Cover (CC) describes the percent cover or cover class of the tree canopy in a stand. Specifically, canopy cover describes the vertical projection of the tree canopy onto an imaginary horizontal surface representing the ground's surface. Estimate of Canopy Cover is used in adjustment of 20ft winds to mid-flame, in fuel moisture conditioning, and in spotting distance models. The scale to the right illustrates the look of representative canopy cover percentages and ranges within each cover class

class. Table 2.2.1-1 Wind sheltering by canopy cover

For Surface Fuels sheltered by a forest canopy on flat terrain (Scott 2007)						
Canopy Cover	Wind Sheltering					
CC ≤ 5%	Unsheltered					
5% < CC ≤ 10%	Dantially Chaltoned					
$10\% < CC \le 15\%$	Partially Sheltered					
15% < CC ≤ 30%	Fully Chaltared Open					
30% < CC ≤ 50%	Fully Sheltered, Open					
CC > 50%	Fully Sheltered, closed					


2.2.2 Canopy (Stand) Height, ft or m

The Canopy Height (CH) describes the average height of the top of the vegetated canopy. Canopy Height estimates are used in adjustment of 20ft winds to mid-flame and in spotting distance models.

2.2.3 Canopy Base Height, ft or m

The Forest Canopy Base Height (CBH) describes the average height from the ground to a forest stand's canopy bottom. Specifically, it is the lowest height in a stand at which there is a sufficient amount of forest

Figure 2.2.1-1 Cover class and Percent canopy

canopy fuel to propagate fire vertically into the canopy. Using this definition, ladder fuels such as lichen, dead branches, and small trees are incorporated. **Estimate of Canopy Base Height is used in the Crown Fire Initiation model.**

2.2.4 Canopy Bulk Density, kg/m³ or lb/ft³

The Forest Canopy Bulk Density (CBD) describes the density of available canopy fuel in a stand. It is defined as the mass of available canopy fuel per canopy volume unit. Typical units are either kg/m³ (LANDFIRE default) or lb/ft³

2.3 Landscape (lcp) Acquisition, Critique, & Editing (ACE)

This guide provides much more detail about the data and the processes involved in geospatial fire analysis.

Stratton, Richard D. 2009. Guidebook on LANDFIRE fuels data acquisition, critique, modification, maintenance, and model calibration. Gen. Tech. Rep. RMRS-GTR-220. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 54 p. (http://www.fs.fed.us/rm/pubs/rmrs_gtr220.pdf)

2.3.8 LCP Data Sources

LANDFIRE Version Comparison: http://www.landfire.gov/version_comparison.php)

Wildland Fire Decision Support System (WFDSS); http://wfdss.usgs.gov

USGS Rapid Data Delivery System (RDDS); http://firedata.cr.usgs.gov

2.3.9 LCP Fuel Themes

Table 2.3.2-1 Landscape fuel themes, units and

Layer/Theme	LANDFIRE Units	Primary References		
	1-13 91-99 (barriers)	Anderson, H. E. 1982. Aids to determining fuel models for estimating fire behavior. Gen. Tech. Rep. INT-122. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station. 22 p. http://www.fs.fed.us/rm/pubs_int/int_gtr122.pdf		
Surface Fuel Model	101-204 91-99 (barriers)	Scott, Joe H.; Burgan, Robert E. 2005. Standard fire behavior fuel models: a comprehensive set for use with Rothermel's surface fire spread model. Gen. Tech. Rep. RMRS-GTR-153. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 72 p. http://www.treesearch.fs.fed.us/pubs/9521		
Canopy Cover (CC)	Percent, 0-100% 70% practical max	Scott, Joe H.; Reinhardt, Elizabeth D. 2005. Stereo photo guide		
Canopy Height (CH or SH)	Meters, *10	for estimating canopy fuel characteristics in conifer stands. Gen. Tech. Rep. RMRS-GTR-145. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 49 p. http://www.treesearch.fs.fed.us/pubs/8473 http://www.landfire.gov/notifications16.php		
Canopy Base Height (CBH)	Meters, *10			
Canopy Bulk Density (CBD)	Kilograms/meter ³ , *100			

Following is a list of GIS layers for fuels critique, modifications, and model calibration

Wildland Fire/Treatment History

Burn severity layers Fire progression layers Fuel treatments Prescribed fire perimeters Wildfire perimeters

Ecological Considerations

Areas of critical environmental concern Sensitive or critical wildlife habitat

Threatened, endangered, and sensitive (TES) flora and

fauna habitat Rivers and streams

Water bodies

Vegetation or cover-type classification

Socio-economic Considerations

Ownership & jurisdiction layer Historical and recreational sites Primary and secondary residences

Remote automated weather stations (RAWS)

Roads & Trails Urban development

Other Base Layers

Aerial photos

Digital orthophoto quad (DOQ) or quarter quad (DOQQ)

Digital raster graph (DRG)

2.3.3 Acquiring the Landscape (lcp) File

- From Incident Analysis in Wildland Fire Decision Support System (http://wfdss.usgs.gov)
- From LANDFIRE Data Acquisition Tool (LFDAT) in ArcGIS. (Be very careful when identifying the data units for each theme)

(http://www.frames.gov/portal/server.pt/community/niftt/382/tools and user documents/1675)

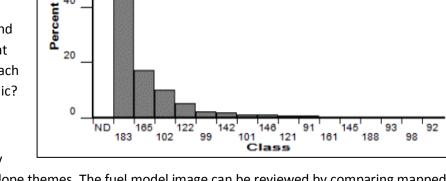
2.3.4 Obtain & Evaluate a LCP Critique report (S495 Unit 5 Lesson 1 – Data Sources)

The LCP Critique report is an essential element in the calibration process. It can be obtained from the same WFDSS analysis landscape tab that the LCP was obtained from. Or, if the lcp is downloaded, there is a stand-alone version (LCPCritique) available at http://frames.nacse.org/11000/11606.html.

On the first page:

View the filename, latitude, cell resolution, and coordinate system in the header information to insure the file used is correct

Figure 2.3.4-1 Using fuel model to critique the


View the Theme units, ranges, and value distributions to make sure that the lcp is valid and that there is no corrupted data.

Determine the important surface fuel models in the lcp. As an example, the histogram to the right shows that fuel models 183, 165, 102, and 122 are the primary surface fuels. Is that what you expect? What are the critical inputs for each of these fuel models? Are any of them dynamic?

Image & legend pages for each Theme

Some data problems can be identified visually

here, such as vertical and horizontal lines in slope themes. The fuel model image can be reviewed by comparing mapped fuel models with areas that have had ground verification or high confidence classifications.

Fuels

Theme Value Distributions for each Surface Fuel Model (in order by importance)

Evaluate the terrain theme ranges and distributions for elevation, slope, & aspect. Are these appropriate for the fuel model? How would you revise or adjust them? Consider whether the fuel model needs to be changed for certain terrain value combinations.

- Canopy characteristics should be evaluated carefully to insure that canopy cover (wind adjustment, fuel shading), tree heights (wind adjustment, spotting distance), and canopy base height (crown fire initiation), distributions make sense for the specific fuel model.
- Canopy bulk density (active crown fire propagation) values are not only related to the fuel model and canopy tree species, they also must be appropriately scaled for the crown fire propagation model used (surface fire control Finney vs. crown fire control Scott & Reinhardt; see crown fire topic in Section 5 (Fire Behavior).

Any errors or adjustments identified here should be provided for in the landscape edits performed before the first analyses are conducted. These edits can be performed in the FARSITE "Landscape Calculator", the WFDSS Analysis "Landscape Editor", the raster calculator in ArcGIS, or NIFTT's Area & Raster Change Tools.

Once the Landscape has been evaluated and initial edits have been identified, the next step is to evaluate the fire behavior outputs that result from combining the landscape and environmental (wind and fuel moisture) inputs. Stratton (2009) recommends identifying 3 reference fires from analogous landscapes that represent a range of environmental conditions and manifest fire behavior to begin the calibration. Look for fires with strong fire behavior narratives and several progressive perimeters so that observed fire behavior and fire growth can be compared to modeled outputs. If this is not possible, calibration may be progressive and depend on earlier periods for the fire of interest.

2.3.5 Configuring Environmental Inputs for Calibration Exercise

While the LCP file critiqued earlier contains all the fuel and terrain inputs, representative fuel moistures and windspeed/direction inputs need to be determined. Field observations and representative RAWS records are the most likely sources. Firefamily Plus can be utilized to evaluate reasonable ranges during periods of interest.

- Fuel Moisture Estimates & Scenarios are discussed in section 3. Look at historic ranges of dead fuel moistures during the part of the fire season you are interested in. Consider what woody fuel moistures currently make sense and how they may trend in the future. Visit the National Fuel Moisture Database (http://www.wfas.net/nfmd/public/index.php) to find local sampling efforts. Look at the full range of herbaceous fuel moistures for dynamic fuels identified in the LCP Critique.
- Similarly, it is important to evaluate the ranges of windspeed and wind direction possible for the analysis area. Historic RAWS records, discussions with local experts and contacts with GACC predictive services should all be considered sources for this information.

2.3.6 Compare Fire Behavior outputs for primary surface fuel models

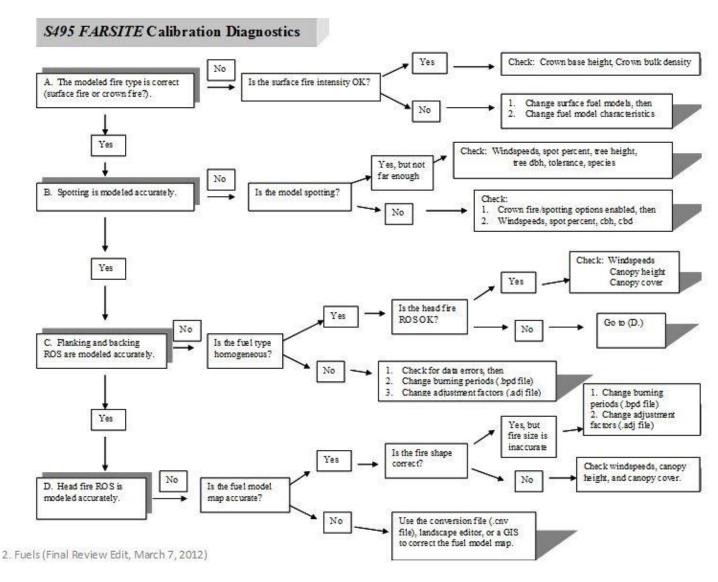
The next step in evaluating the fuels information found in landscapes (LCP) acquired for the analysis area is in evaluating the primary fuel models in terms of the environmental inputs identified above. Both BehavePlus and CompareModels495.xls are useful tools in the initial review. Look at ranges of spread rates and flame lengths produced.

2.3.7 Conduct a WFDSS Basic Analysis or FlamMap Fire Behavior Run

These analyses provide perspective on the flammability of the landscape.

- Use the fuel moisture and wind scenarios identified above.
- Consider using fuel moisture conditioning using the last several days' weather.
- Consider the value of gridded winds for a recent day with known fire behavior.
- Look at the spread rate, flame length, and crown fire outputs to determine whether the landscape inputs are capturing fire potential as you anticipate it.
- Evaluate fuel moistures across the landscape using the output themes.

This analysis may suggest the need for changes to fuel model to increase surface spread or intensity and canopy base height or canopy bulk density to adjust crown fire behavior outputs over portions of the landscape.


2.3.8 Edit & Update the Landscape (LCP) file

Again, these edits can be performed in the FARSITE "Landscape Calculator", the WFDSS Analysis "Landscape Editor", the raster calculator in ArcGIS, or NIFTT's Area & Raster Change Tools.

2.3.9 Conduct WFDSS Near Term Fire Behavior (NTFB) or FARSITE calibration run with iterative LCP edits

Finally, conducting iterative fire growth runs using WFDSS NTFB or FARSITE with actual wind and weather streams allows for comparing modeled projections to actual growth events. Make LCP edits as necessary.

Figure 2.3.9-1 Farsite calibration

2.4 References

Anderson, H. E. 1982. Aids to determining fuel models for estimating fire behavior. Gen. Tech. Rep. INT-122. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station. 22 p.

Andrews, Patricia L. 2009. BehavePlus fire modeling system, version 5.0:Variables.Gen. Tech. Rep. RMRS-GTR-213 Revised. Fort Collins, CO; Department of Agriculture, Forest Service, Rocky Mountain Research Station. 111 p.

Bradshaw, Larry S.; Deeming, John E.; Burgan, Robert E.; Cohen, Jack D., compilers. The 1978 National Fire-Danger Rating System: technical documentation. General Technical Report INT-169. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station; 1984. 44 p.

Burgan, Robert E. 1987. Concepts and interpreted examples in advanced fuel modeling. Gen. Tech. Rep. INT-238. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Research Station. 40 p.

Finney, M. A. 1998. FARSITE: Fire Area Simulator—model development and evaluation. Res. Pap. RMRS-RP-4. Ft. Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 47 p.

Keane, Robert E.; Garner, Janice L.; Schmidt, Kirsten M.; Long, Donald G.; Menakis, James P.; Finney, Mark A. 1998. Development of input data layers for the FARSITE fire growth model for the Selway-Bitterroot Wilderness Complex, USA. Gen. Tech. Rep. RMRSGTR- 3. Ogden, UT: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 66 p.

Keane, Robert E.; Mincemoyer, Scott A.; Schmidt, Kirsten M.; Long, Donald G.; Garner, Janice L. 2000. Mapping vegetation and fuels for fire management on the Gila National Forest Complex, New Mexico, [CD-ROM]. Gen. Tech. Rep. RMRS-GTR-46-CD. Ogden, UT: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, 126 p.

Rothermel, R. C. 1972. A mathematical model for predicting fire spread in wildland fuels. Res. Pap. INT-115. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station. 40 p. Rothermel, R. C. 1983. How to predict the spread and intensity of forest and range fires. Gen. Tech. Rep. INT-143. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station. 161 p

Schlobohm, Paul, and Brain, Jim, compilers. 2002. Gaining an understanding of the National Fire Danger Rating System. PMS 932. Boise, ID. National wildfire Coordinating Group. 72p.

Scott, Joe H.; Burgan, Robert E. 2005. Standard fire behavior fuel models: a comprehensive set for use with Rothermel's surface fire spread model. Gen. Tech. Rep. RMRS-GTR-153. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 72 p.

Scott, Joe H. 2007. Nomographs for estimating surface fire behavior characteristics. Gen. Tech. Rep. RMRS-GTR-192. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 119 p. Stratton, Richard D. 2006. Guidance on spatial wildland fire analysis: models, tools, and techniques. Gen. Tech. Rep. RMRS-GTR-183. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 15 p.

Stratton, Richard D. 2009. Guidebook on LANDFIRE fuels data acquisition, critique, modification, maintenance, and model calibration. Gen. Tech. Rep. RMRS-GTR-220. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 54 p.

3 Fuel Moisture

3.1 Fuel Moisture Sampling

General Guidelines

- Record site name, date, time, observer name, observed weather, general site description
- DO NOT collect samples if water drops or dew are present on samples
- Keep samples in a cool and dry location
- Seal containers with tape that will not leave residue

Live Fuels

- Only collect foliage (needles) and very small twigs remove flowers, seeds, nuts, or berries
- Pack containers loosely to avoid spillage but ensure container is full
- Include stems of herbaceous plants
- Replace lid on container immediately after collecting sample

Dead Fuels

- Samples should not be attached to live trees or shrubs
- Avoid decayed samples that crumble or splinter when rubbed
- Collect samples from several different plants
- Ensure container is full or about 20 grams
- Do not collect buried samples
- Pick samples of different size within the time lag class
- Recently fallen material should be avoided
- Remove all lichen, moss, and very loose bark from sample

Duff and Soil

- Remove all soil and live tree or plant roots from sample
- Avoid any soil particles in duff samples and vice versa

<u>Litter</u>

Collect only un-compacted dry litter from both sunny and shady areas

Drying Samples:

- Preheat drying oven between 60°C (140°F) 100°C (212°F). Be sure to note temp used.
- Place sample cans with closed lids on scale and record "wet" weights
- Remove lid just prior to placing in oven. If material is lost, re-weigh sample
- Dry sample for 24 hours (very wet samples 48 hours)
- Replace Lids immediately after sample is removed from oven and weigh
- Calculate fuel moisture using the following formula:

% Moisture Content = $\frac{\text{wet weight of sample-dry weight of sample}}{\text{dry weight of sample-container tare weight}} X 100$

Table 3.1-1 - Fuel moisture calculation worksheet

Gross Weight	C. Container Weight	D. Water Weight	E. Dry Weight	F. % Moisture
--------------	---------------------	-----------------	---------------	---------------

A. Wet Wt	B. Dry Wt.	(D = A - B)	(E = B - C)	F=(D/E) X 100

3.2 1-hr Moisture Content

- 1. Using Table A, determine Reference Fuel Moisture (RFM) % from intersection of temperature & relative humidity. Record this RFM percentage.
- 2. Select Table B, C, or D to adjust RFM for local conditions by finding current month in table title.
 - Are the fine fuel more than 50% shaded by canopies and clouds? If yes, use bottom (**shaded**) portion of table. If no, use top (**Exposed**) portion of table.
 - Determine the appropriate row based on aspect and slope. Determine the appropriate column based on time of day and elevation of area of concern when compared to the wx site elevation.
 - Obtain the 1-hr Moisture Content Correction (%) from the intersection of row & column.
- 3. Add the resulting 1-hr Moisture Content Correction (%) to the Reference Fuel Moisture (%)

3.2.1 Table 3.2.1-1 (A) Reference Fuel Moisture

Dry			_ (Rela	ative	Hum	idity	(%)								
Bulb Temp (°F)	0 to 4	5 to 9	10 to 14	15 to 19	20 to 24	25 to 29	30 to 34	35 to 39	40 to 44	45 to 49	50 to 54	55 to 59	60 to 64	65 to 69	70 to 74	75 to 79	80 to 84	85 to 89	90 to 94	95 to 99	100
10-29	1	2	2	3	4	5	5	6	7	8	8	8	9	9	10	11	12	12	13	13	14
30-49	1	2	2	3	4	5	5	6	7	7	7	8	9	9	10	10	11	12	13	13	13
50-69	1	2	2	3	4	5	5	6	6	7	7	8	8	9	9	10	11	12	12	12	13
70-89	1	1	2	2	3	4	5	5	6	7	7	8	8	8	9	10	10	11	12	12	13
90-109	1	1	2	2	3	4	4	5	6	7	7	8	8	8	9	10	10	11	12	12	13
109+	1	1	2	2	3	4	4	5	6	7	7	8	8	8	9	10	10	11	12	12	12

3.2.2 Table 3.2.2-1 (B) 1-hr Moisture Content Corrections; May-Jun-Jul Unshaded – Less than 50% shading of surface fuels

					3113110			• • • • • • • • • • • • • • • • • • • •		o Sila	<u>.</u>								
Aspect	Slope	08	00-09	59	10	00-11	59	12	00-13	59	14	00-15	559	16	00-17	59	18	00-19	59
Asp	Sic	В	L	Α	В	L	A	В	L	Α	В	L	Α	В	L	Α	В	L	Α
N	0-30	2	3	4	1	1	1	0	0	1	0	0	1	1	1	1	2	3	4
IV	31%	3	4	4	1	2	2	1	1	2	1	1	2	1	2	2	3	4	4
Е	0-30	2	2	3	1	1	1	0	0	1	0	0	1	1	1	2	3	4	4
	31%	1	2	2	0	0	1	0	0	1	1	1	2	2	3	4	4	5	6
S	0-30	2	3	3	1	1	1	0	0	1	0	0	1	1	1	1	2	3	3
3	31%	2	3	3	1	1	2	0	1	1	0	1	1	1	1	2	2	3	3
W	0-30	2	3	4	1	1	2	0	0	1	0	0	1	0	1	1	2	3	3
VV	31%	4	5	6	2	3	4	1	1	2	0	0	1	0	0	1	1	2	2

Shaded - 50 % or more shading of surface fuels due to canopy and/or cloud cover

N	All	4	5*	5	3	4	5	3	3	4	3	3	4	3	4	5	4	5	5
E	All	4	4*	5	3	4	5	3	3	4	3	4	4	3	4	5	4	5	6
S	All	4	4*	5	3	4	5	3	3	4	3	3	4	3	4	5	4	5	5
W	All	4	5*	6	3	4	5	3	3	4	3	3	4	3	4	5	4	4	5

3.2.3 Table 3.2.3-1 (C) 1-hr Moisture Content Corrections; Feb-Mar-Apr & Aug-Sep-Oct Unshaded – Less than 50% shading of surface fuels

ect	be	08	00-09	59	10	00-11	59	12	00-13	359	14	00-15	59	16	00-17	'59	18	00-19	59
Aspect	Slope	В	L	Α	В	L	Α	В	L	Α	В	L	Α	В	L	Α	В	L	Α
A.	0-30	3	4	5	1	2	3	1	1	2	1	1	2	1	2	3	3	4	5
N	31%	3	4	5	3	3	4	2	3	4	2	3	4	3	3	4	3	4	5
Е	0-30	3	4	5	1	2	3	1	1	1	1	1	2	1	2	4	3	4	5
	31%	3	3	4	1	1	1	1	1	1	1	2	3	3	4	5	4	5	6
S	0-30	3	4	5	1	2	2	1	1	1	1	1	1	1	2	3	3	4	5
3	31%	3	4	5	1	2	2	0	1	1	0	1	1	1	2	2	3	4	5
W	0-30	3	4	5	1	2	3	1	1	1	1	1	1	1	2	3	3	4	5
VV	31%	4	5	6	3	4	5	1	2	3	1	1	1	1	1	1	3	3	4
		Shad	ed - 5	50 %	or mo	re sh	ading	g of s	urfac	e fuel	s due	to ca	anopy	and/	or clo	oud c	over		
NI	A 11	4	F *	^	4	-		<u> </u>	4	F	2	4		4	F	F	4	F	^

N	All	4	5*	6	4	5	5	3	4	5	3	4	5	4	5	5	4	5	6
Е	All	4	5*	6	3	4	5	3	4	5	3	4	5	4	5	6	4	5	6
S	All	4	5*	6	3	4	5	3	4	5	3	4	5	3	4	5	4	5	6
W	All	4	5*	6	4	5	6	3	4	5	3	4	5	3	4	5	4	5	6

3.2.4 Table 3.2.4-1 (D) 1-hr Moisture Content Corrections; Nov-Dec-Jan Unshaded – Less than 50% shading of surface fuels

Aspect	Slope		00-09 - nigh		10	00-11	59	12	00-13	59	14	00-15	559	16	00-17	59	18	00-19	59
Asp	SIC	В	L	Α	В	L	A	В	L	A	В	L	A	В	L	Α	В	L	Α
N	0-30	4	5	6	3	4	5	2	3	4	2	3	4	3	4	5	4	5	6
/٧	31%	4	5	6	4	5	6	4	5	6	4	5	6	4	5	6	4	5	6
Е	0-30	4	5	6	3	4	4	2	3	3	2	3	3	3	4	5	4	5	6
	31%	4	5	6	2	3	4	2	2	3	3	4	4	4	5	6	4	5	6
S	0-30	4	5	6	3	4	5	2	3	3	2	2	3	3	4	4	4	5	6
3	31%	4	5	6	2	3	3	1	1	2	1	1	2	2	3	3	4	5	6
W	0-30	4	5	6	3	4	5	2	3	3	2	3	3	3	4	4	4	5	6
VV	31%	4	5	6	4	5	6	3	4	4	2	2	3	2	3	4	4	5	6

Shaded – 50 % or more shading of surface fuels due to canopy and/or cloud cover

N	All	4	5*	6	4	5	6	4	5	6	4	5	6	4	5	6	4	5	6
E	All	4	5*	6	4	5	6	4	5	6	4	5	6	4	5	6	4	5	6
S	All	4	5*	6	4	5	6	4	5	6	4	5	6	4	5	6	4	5	6
W	All	4	5*	6	4	5	6	4	5	6	4	5	6	4	5	6	4	5	6

3.2.5 Night Time Estimates of 1-hr Moisture Content

Published Reference Fuel Moisture and Correction Tables for Night time Conditions are not included here based on recommendation from Pat Andrews at the Missoula Fire Lab. She recommends:

- Dry Bulb Temperature and RH should be estimated for the location of interest first
- Use Table A (above) to estimate the Reference Fuel Moisture
- Use the appropriate 1-hr Moisture Content Correction Table based on the time of the year
- Obtain the correction for 0800, shaded conditions, and appropriate aspect from that table and add it to the Reference Fuel Moisture to estimate 1-hr moisture content for night time conditions.

3.3	Probab	ility	of Ign	ition								Ta	ble 3.3-	1 Probal	bility of	ignition	
	DB Temp						1.	-hr Mc	oisture	Cont	ent (%	%)					
	(° F)	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
	110+	100	100	90	80	70	60	50	40	40	30	30	30	20	20	20	10
	100-109	100	90	80	70	60	60	50	40	40	30	30	20	20	20	10	10
	90-99	100	90	80	70	60	50	50	40	30	30	30	20	20	20	10	10
ב ב	80-89	100	90	80	70	60	50	40	40	30	30	20	20	20	20	10	10
ומכ	70-79	100	80	70	60	60	50	40	40	30	30	20	20	20	10	10	10
V-10% Siladiiig	60-69	90	80	70	60	50	50	40	30	30	30	20	20	20	10	10	10
	50-59	90	80	70	60	50	40	40	30	30	20	20	20	10	10	10	10
	40-49	90	80	70	60	50	40	40	30	30	20	20	20	10	10	10	10
	30-39	90	70	60	60	50	40	40	30	30	20	20	20	10	10	10	10
		100															
	110+	100	100	80	70	60	60	50	40	40	30	30	20	20	20	20	10
	100-109	100	90	80	70	60	50	50	40	40	30	30	20	20	20	10	10
	90-99	100	90	80	70	60	50	40	40	30	30	30	20	20	20	10	10
<u> </u>	80-89	100	90	80	70	60	50	40	40	30	30	20	20	20	10	10	1(
5	70-79	100	80	70	60	50	50	40	40	30	30	20	20	20	10	10	10
7-50 /0 SHAMILY	60-69	90	80	70	60	50	50	40	30	30	20	20	20	20	10	10	1(

50-59

40-49

30-39

	110+	100	90	80	70	60	50	50	40	40	30	30	20	20	20	10	10
	100-109	100	90	80	70	60	50	50	40	30	30	30	20	20	20	10	10
	90-99	100	80	80	70	60	50	40	40	30	30	20	20	20	10	10	10
5																	
60-90% shading	80-89	100	80	70	60	60	50	40	40	30	30	20	20	20	10	10	10
sha	70-79	90	80	70	60	50	50	40	30	30	30	20	20	20	10	10	10
%0 6	60-69	90	80	70	60	50	40	40	30	30	20	20	20	10	10	10	10
- 09																	
	50-59	90	80	70	60	50	40	40	30	30	20	20	20	10	10	10	10
	40-49	90	70	60	50	50	40	30	30	30	20	20	20	10	10	10	10
	30-39	80	70	60	50	50	40	30	30	20	20	20	10	10	10	10	10

	110+	100	90	80	70	60	50	50	40	30	30	30	20	20	20	10	10
	100-109	100	90	80	70	60	50	40	40	30	30	20	20	20	20	10	10
	90-99	100	80	70	60	60	50	40	40	30	30	20	20	20	10	10	10
ing	80-89	90	80	70	60	60	50	40	30	30	30	20	20	20	10	10	10
100% shading	70-79	90	80	70	60	50	40	40	30	30	20	20	20	10	10	10	10
s %	60-69	90	80	70	60	50	40	40	30	30	20	20	20	10	10	10	10
100																	
	50 50	00	70	60	60	50	40	40	30	30	20	20	20	10	10	10	10
	50-59	90	70	60	60	30	40	40	30	30	20	20	20	10	10	10	10
	40-49	80	70	60	50	50	40	30	30	20	20	20	10	10	10	10	10
	30-39	80	70	60	50	40	40	30	30	20	20	20	10	10	10	10	10
1	1																

3.4 10-hr, 100-hr, and 1000-hr Moisture Content

As inputs to the surface fire spread and/or fire danger models, these estimates do not usually have a large influence on spread rates. Values may be determined in a variety of ways:

- 1. After estimating 1-hr moisture content, 10-hr and 100-hr moisture content can be estimated by adding incremental amounts to each (e.g. adding 1% for 10-hr and 2% for 100-hr or 2% and 4% respectively).
- 2. Using a local RAWS station or the Geographic Area's Predictive Service summaries, NFDRS moisture content estimates or forecast values may be available for each of these fuel categories.
- 3. The National Fuel Moisture Database (http://www.wfas.net/index.php/national-fuel-moisture-database-moisture-drought-103) may have sampling locations near your setting that have estimates for these fuel moistures.

3.5 Live Moisture Content

The Rothermel Surface fire model employed in fire danger and fire behavior calculations include live fuel moisture estimates as inputs in many cases. Both NFDRS and NFBPS systems include dynamic fuel models.

As discussed in fuel model descriptions, live (foliage) moisture content estimates can be critical to effective fire behavior modeling. Live moisture inputs are required for 5 of the original 13 fuel models (FB2, FB4, FB5, FB7, and FB10) and all of the GR, GS, SH, and TU fuels among the 40 standard fuel models.

This general guide is intended to reflect overall trends in the moisture content found in live foliage among surface fuels. It does not reflect the differences between conifer and broadleaf species. It does not reflect the role of flammable chemical content in some species. In any situation, estimates of moisture content for important species in a given fire environment may require field measurements.

Moisture Content (%)	Stage of Vegetative Development
300%	Fresh foliage, annuals developing early in the growing cycle.
200%	Maturing foliage, still developing, with full turgor.
100%	Mature foliage, new growth complete and comparable to older perennial foliage.
50%	Entering dormancy, coloration starting, some leaves may have dropped from stem.
30%	Completely cured, treat as dead fuel.

3.5.1 Live Herbaceous Moisture Content

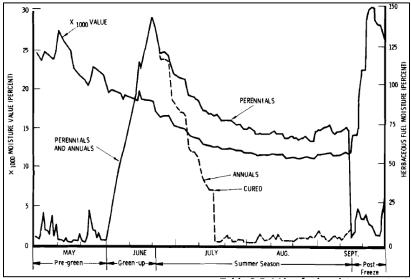
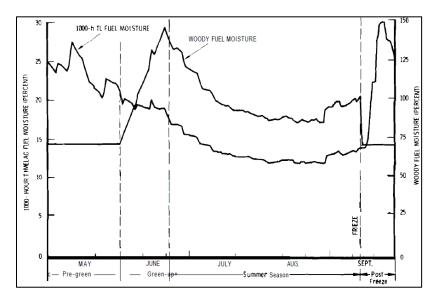


Table 3.5-1 Live fuel moisture content

3. Fuel Moisture (Final June 17, 2014)

This calculated value represents the approximate moisture content of live herbaceous vegetation expressed as a percentage of the oven dry weight of the sample. Both the herbaceous vegetation type (annual or perennial) and the climate class control the rate of drying in the NFDRS processor. Faster drying occurs in annual plants than in perennials. Also, plants native to moist climates respond differently to a given precipitation event than plants native to arid climates would to an event of the same magnitude. For example, modeled fuel moistures respond more dramatically to periods of drought in climate class 4 than in climate class 1. Accurate recording of the herbaceous vegetation type and the climate class is critical if the calculated herbaceous fuel moisture is to be representative of the local area.


Typical herbaceous fuel moisture values start out low (equal to 1- hour fuel moisture), then increase rapidly as the growing season progresses. They may range from a high of 250, typical of the peak of the growing season, to as low as 3 or 4 when the foliage is dead or has reached maximum dormancy and responds as a dead fuel would to changes in external moisture influences. Fire managers should monitor the trend of herbaceous fuel moisture values as part of their validation of NFDRS outputs.

Though herbaceous fuels do exhibit a peak in moisture content as they reach full development early in the growing cycle, these generalizations may not reflect the actual moisture content at any point in time.

Live Herbaceous moisture estimates can be very important when used as inputs to fire behavior models, especially when dynamic fuel models are used (see section 2.2.5). In these cases, models can produce large changes with moisture estimates that range between 30% and 120%, especially between 95% and 100%.

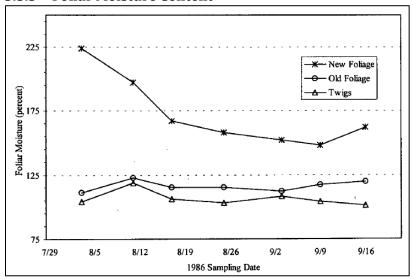

3.5.2 Live Woody Moisture Content

Figure 3.5.2-1 Changes in live woody fuel moisture by season

This fuel moisture category the approximate moisture content of the live woody vegetation (shrubs, small stems, branches and foliage) expressed as a percentage of the oven dry weight of the sample. As with the herbaceous fuel moisture, it varies significantly by climate class. Plants native to moist environments tend to have higher woody fuel moisture values than those native to more arid climates. Woody fuel moisture values typically range from a low of 50 or 60 observed just before the plant begins to grow in the spring to a high of approximately 200 reached at the peak of the growing season. The default value used in NFDRS processors to initiate the season varies by the climate class. In climate class 1 the default value is 50. For climate class 2 it is 60. Climate class 3 uses 70 and climate class 4 uses 80.

3.5.3 Foliar Moisture Content

Foliar Moisture Content is defined in the BehavePlus Variable help as the moisture content of the conifer overstory foliage (needles only). It is used along with surface fire intensity and crown base height as input to the crown fire initiation model (*see section 5.5.3.1*). Further, the CFFBP defines it as the moisture content using only conifer needles that are at least one-year old. BehavePlus allows a range of 30%-300% as with other live fuels, but WFDSS allows only a range of 70% to 130%, corresponding to the CFFBP definition. Default value is typically 100%. The example plot to the right is for Abies lasiocarpa, or Subalpine Fir. (Agee, et al 2001)

3.5.3.1 Spring Dip in Northern Conifers

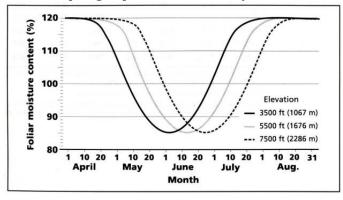
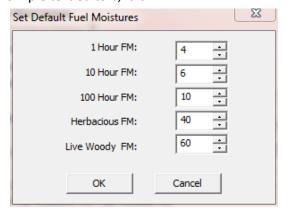
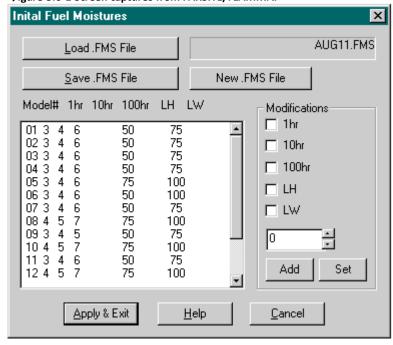


Figure 3.5.3.1-1 Spring dip in Foliar moisture content

As shown in the graph below, there is a measurable drop in foliar moisture content associated with the emergence of new growth each year, at least among northern conifers. CFFBP models have identified both longitude and elevation as factors in its prediction.

3.5.3.2 Foliar Moisture in Broadleaf Species


For deciduous species, foliar moisture follows trends similar to Live Woody Moisture. Though in many situations, it is not a crown fire risk, some examples like oak should be considered carefully.


3.6 NTFB/FARSITE & STFB/FLAMMAP Fuel Moisture (.FMS) File and Conditioning Period

FMS files are simple space delimited text files that identify: fuel moisture walker for one charge production be used at the

beginning of the analysis period. Included are 1hr, 10hr, 100hr, Live Herbaceous, and Live Woody moisture contents for each fuel model that is found on the accompanying landscape (lcp) file.

Though these files can be created and edited in simple text editors, it is

best to create new FMS files using the tool in either the FARSITE Project Inputs dialog box or the FLAMMAP Run/Inputs dialog box shown he

In WFDSS, default data for fuel moistures and conditioning weather are provided for analyst review and edit.

These fuel moisture values are either used to initiate fuel moistures at the beginning of a conditioning period in STFB/FLAMMAP and NTFB/FARSITE or applied across the landscape at the beginning of the analysis. Though it is possible to adjust fuel moistures for each fuel model independently in the FMS file, these adjustments are unlikely to reflect differences based on changing weather patterns and differences in solar radiation based on fuel and terrain characteristics in the landscape over the conditioning period.

Firefamily Plus may be used to estimate current fuel moistures for a given date, using stored weather observations from selected RAWS stations or defined Special Interest Groups (SIG) of stations. Simply define the dates of interest in the Active Working Set Definition and produce a "Weather/Season Reports/Daily Listing" report that includes them.

The *Conditioning Period* generally should include weather for 3-7 days. Additional days produce little benefit.

3.7 Predictive Services Resources

Figure 3.7-1 GACC service areas

Each Geographic Area Coordination Center (GACC) collects weather observations and forecasts, from which fuel moisture, fire danger, and fire potential assessments are made. All of the geographic area predictive service products can be referenced from the National Interagency Coordination Center (NICC) page (http://www.predictiveservices.nifc.gov/outlooks/outlooks.htm)

Generally, *a 7-Day Significant Fire Potential Outlook* is produced each day during the fire season and can be found among the outlook products on the GACC predictive services page. This example is from the southwest.

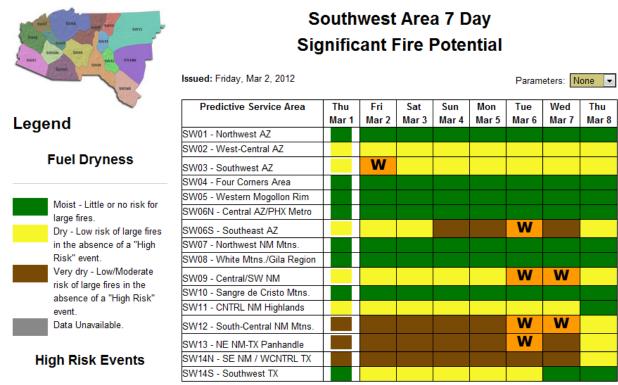


Figure 3.7-2 Example of a 7-day Significant Fire Potential outlook

This 7 day outlook also includes forecasts for the weather elements, fuel moistures, and fire danger indices that are used to produce these potential classifications. These 7-day forecasts represent averages for areas defined by the geographic area to be climatologically distinct. These products can be valuable for making strategic decisions for short and near term. Keep in mind that, like weather forecasts, values for the first day or two of the outlook are generally the most accurate and provide the greatest value.

Other standard products include daily, monthly, and seasonal assessments. Several produce multi-media briefings that can be linked from the outlooks page.

During the active fire season, each geographic area predictive service office is staffed 7 days a week to support the assessment needs of fire program managers, incident personnel, and coordination of regional fire management resources.

3.8 US Drought Monitor

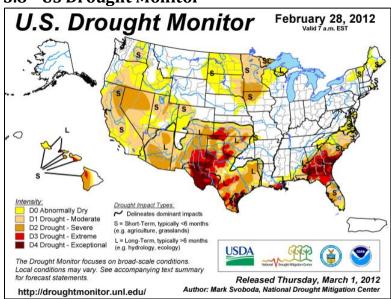


Figure 3.8-1 U.S. Drought Monitor map

The US Drought Monitor, (http://droughtmonitor.unl.edu/monitor.html), provides a clickable map of national, regional, and state summaries of drought assessment produced weekly. This product is a synthesis of multiple indices and impacts and represents a consensus of federal and academic scientists.

In addition to the overall drought monitor summaries, the site provides important links to current condition and forecasts for a range of drought measures, such as Palmer Drought Severity Index (PDSI), Standardized Precipitation Index (SPI), snowpack, soil moisture, and climate outlook products.

3.9 Wildland Fire Assessment System (WFAS)

Maintained by the Fire Behavior Unit at the Fire Sciences Laboratory in Missoula, WFAS (http://www.wfas.net/) provides a range of fire potential/danger, Weather, Moisture/Drought, and experimental products from a national perspective.

3.9.1 Google Earth Map Data

Current and historic RAWS data is available in a Google Earth compatible format. The files are updated daily and include current weather, fire danger and fuel moisture observations as well as forecast conditions when available. Because products like these are updated periodically, it is a good idea to update to latest versions of these files to insure best utility.

3.9.2 Energy Release Component (ERC-G) and Seasonal Fuel Moisture Assessment

Though National Fire Danger Rating System (NFDRS) components and indices are usually based on locally selected fuel models, national assessments of seasonal severity utilize NFDRS Fuel Model G in their calculations of ERC. Fuel Model G includes significant loadings in all live and dead fuel classes and, as a result, is more sensitive to cumulative temperature, humidity, and precipitation anomalies than others. While the Geographic Area Predictive Services units produce

summary estimates of current and forecast ERC-g, WFAS produces 7 days of gridded forecasts for ERC-G that are based on the National Digital Forecast Database (NDFD). Both maps and lat/long queries are available for users to consult for their area and specific location.

3.9.3 Experimental Growing Season Index and NDVI Live Fuel Moisture

Among several experimental products produced by WFAS, two may provide insight to overall live fuel conditions.

The <u>Growing Season Index</u>, <u>or Live Fuel Index</u>, <u>(GSI/LFI)</u> are the same index with GSI scaled from 0-1 and LFI scaled from 0-100. LFI estimates can be produced in Firefamily Plus. It uses basic data of Minimum Temperature, Vapor Pressure Deficit, and Day length to produce a simple metric of plant physiological limits to photosynthesis.

Utilizing AVHRR NDVI technology, <u>the Live Fuel (or shrub) Moisture</u> estimates are characterizations of composite live fuel moisture content based on satellite imagery. See section 3.10 below. As the name would suggest, the values give best estimates in plant communities that are dominated by shrubs.

3.10 Normalized Difference Vegetation Index (NDVI) Greenness Imagery

These images, derived from a satellite sensor, have been produced weekly since 1989, producing a historical record of vegetation phenology that can be used to characterize current vegetation "greenness". They can be used to cross-reference with drought assessments and other characterizations of plant development, moisture stress and curing. Cloud cover can have a significant impact on image quality in portions of the image.

3.10.1 Depictions

3.10.1.1 Departure from Average Greenness (DA)

Departure from Average Greenness maps portrays the absolute difference between current value and the historic average greenness for the corresponding week of the year based on all years 1989-last year.

3.10.1.2 Relative Greenness (RG)

Relative Greenness maps portray how green the vegetation is compared to how green it has been over the historical reference period (1989-last year). Because each pixel is normalized to its own historical range, all areas (dry to wet) can appear fully green at some time during the growing season.

3.10.1.3 Visual Greenness (VG)

Visual Greenness maps portray vegetation greenness compared to a very green reference such as an alfalfa field or a golf course. The resulting image is similar to what you would expect to see from the air. Normally dry areas will never show as green as normally wetter areas.

3.10.1.4 Normalized Diff. Vegetation Index (ND)

Normalized Difference Vegetation Index is the base data from which all the other depictions are derived.

3.10.2 Data Sources

<u>Wildland Fire Assessment System (WFAS) AVARR NDVI Greenness Reference</u> is the comprehensive source of images and data archives. RMRS-GTR-179-DVD can be ordered and has archives from 1989-2005.

3.10.3 GIS Display Considerations in ArcGIS

3.10.3.1 Projection for Full US Image

- 1. Create New Blank Map Document
- 2. Set Data Frame Coordinate System Properties from the *View* menu
 - Use Predefined Coordinate System
 - Polar North Pole Lambert Azimuthal Equal Area
 - Central Meridian -100° (West Longitude)
 - Latitude of Origin 45° (North Latitude)
 - Linear Unit: Meter, 1
- 3. Save Map Document as "US_NDVI" and use this map document to when adding future images.
- 4. Individual grids can be geo-referenced by using this information to define the projection.

3.10.3.2 Add the grid file (*.bil) data (♥)

- 1. Obtain the dated zip file from the <u>NDVI Archive</u> and extract contents
- 2. Add "*.bil" file to map display. Colors should display because colormap (clr) file is included.

3.10.3.3 Define Projection for added bil file

- Use ArcToolbox→Data Management
 Tools→Projections and Transformations→Define
 Projection
- 2. Use coordinate system used for data frame.

3.10.3.4 Convert Ascii Grid to Arc Grid

- 1. Requires spatial analyst extension
- Use ArcToolbox→Conversion Tools→To Raster→Raster to Other Format
- 3. Identify the *.bil file as the input raster.
- 4. Identify a folder of your choice as the location where ESRI Grid will be created

3.10.3.5 Add the ESRI Grid () you created

3.10.3.6 Attach Legend (lyr file) to ESRI Grid

- 1. Display layer properties for ESRI Grid
- 2. Highlight Symbology Tab and "Show" Classified symbology.
- 3. "Import" provided lyr file (DA_9.lyr or NDVI DA grouped legend.lyr)

3.11 References

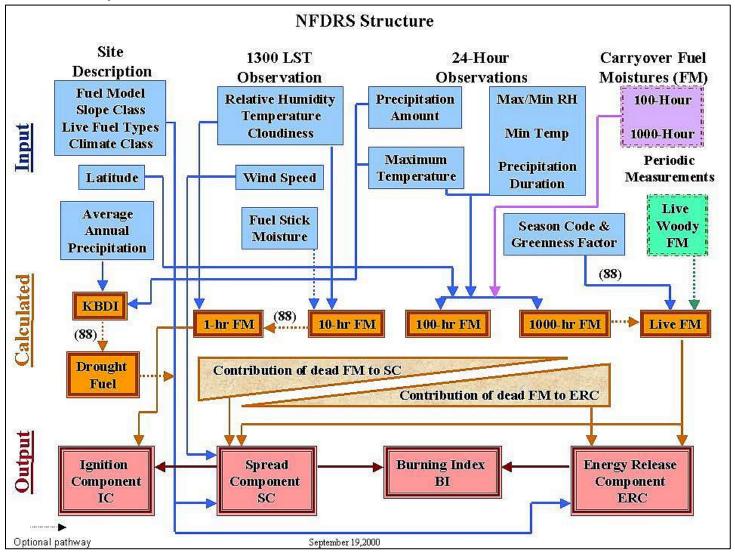
Agee, James K, Wright, Clinton S. Williamson, Nathan, and Huff, Mark H.; Foliar Moisture Content of Pacific Northwest Vegetation and its Relation to Wildland Fire Behavior; 2002; Forest Ecology and Management; 167: 57-66.

Bradshaw, Larry S.; Deeming, John E.; Burgan, Robert E.; Cohen, Jack D., compilers. 1984. The 1978 National Fire-Danger Rating System: technical documentation. Gen. Tech. Rep. INT-169. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station. 44 pp.

Burgan, R.E.; Hartford, R.A. 1993. Monitoring vegetation greenness with satellite data. United States Department of Agriculture, Forest Service, General Technical Report INT-297, Intermountain Forest and Range Experiment Station, Ogden, Utah. 13 pages.

Burgan, Robert E.; Hartford, Roberta A.; Eidenshink, Jeffery C. 1996. Using NDVI to assess departure from average greenness and its relation to fire business. Gen. Tech. Rep. INT-GTR-333. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Research Station. 8 p..

Hirsch, Kelvin G.; Canadian Forest Fire Behavior Prediction (FBP) System: User's Guide; 1996; Canadian Forest Service Special Report 7; 122p.


Norum, Rodney A.; Miller, Melanie. 1984. Measuring fuel moisture content in Alaska: standard methods and procedures.. Gen. Tech. Rep. PNW-GTR-171. 1984. U.S. Department of Agriculture, Forest Service, Pacific Northwest Forest and Range Experiment Station. 34 p.

Rothermel, Richard C. 1983. How to predict the spread and intensity of forest and range fires. Gen. Tech. Rep. INT-143. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station. 161 p..

4 Fire Danger

4.1 National Fire Danger Rating System (NFDRS)

4.1.1 System Overview

4.1.2 Station Catalog Settings

Climate Class and Greenup

Table 4.1.2.1-1 Climate class and greenup

Clim	Humidity	Characteristi	Greenup	
Class	Profile	c Vegetation	Days	
1	Arid	Desert &	7	
1	Semi-Arid	Steppe		
2	Sub-Humid (rainfall deficient in summer)	Savanna & Open Conifer Forest	14	
3	Sub-Humid to Humid	Savanna &Forests	21	

Figure 4.1.1 - Overview of the NFDRS

4	Wet	Rain Forests	28
	seasons)		
	adequate in all		
	(rainfall		

Annual vs Perennial

The loading of fine fuels associated with **annual grasses** shift from live to dead and stays there for the duration of the season. For **perennial grasses**, the shift from live to dead is much and may even stop or reverse if the right combinations of temperature and precipitation occur during the season.

Deciduous vs Evergreen

In the 1988 revision to the NFDRS, separate equations were developed for deciduous and evergreen shrub vegetation, requiring users to enter a code indicating whether their local shrub vegetation is deciduous (D) or evergreen (E)

4.1.3 National Fire Danger Rating System (NFDRS) Fuel Models (*1988 Fuel Model changes)

Table 4.1.3-1 NFDRS fuel models

		The bunger Rating	- 3		,				, , , , , , , , , , , , , , , , , , ,		Table 4.1.	3-1 NFDRS 1	uei illouei	3	I
Carrier	Fuel Model	Fuel Model Name	1hr Load t/ac	10hr Load t/ac	100hr Load t/ac	1000hr Load t/ac	Herb Load t/ac	Woody Load t/ac	Total Load t/ac	1hr SAV	Herb SAV	Woody SAV	Bed Depth ft	Moist Extinct %	Heat Cntnt btu/lb
GR	A	Western Annual Grasses	0.2	N/A	N/A	N/A	.03	N/A	0.5	3000	3000	N/A	0.8	15	8000
GR	L	Western Perennial Grasses	0.25	N/A	N/A	N/A	0.5	N/A	0.75	2000	2000	N/A	1.0	15	8000
GS	C *	Pine Grass Savanna	0.4	1.0	N/A	N/A	0.8	0.5 (*0.8)	2.1	2000	2500	1500	0.75	20	8000
GS	N*	Sawgrass	1.5	1.5	N/A	N/A	N/A	2.0	5.0	1600	N/A	1500	3.0	25 (*40)	8700
GS	S	Tundra	0.5	0.5	0.5	0.5	0.5	0.5	3.0	2500	1500	1200	0.4	25	8000
GS	T	Sagebrush Grass	1.0	0.5	N/A	N/A	0.5	2.5	4.5	2500	2000	1500	1.25	15	8000
SH	В	California Mixed Chaparral	3.5	4.0	0.5	N/A	N/A	11.5	19.5	700	N/A	1250	4.5	15	9500
SH	0	High Pocosin	2.0	3.0	3.0	2.0	N/A	7.0	17.0	1500	N/A	1500	4.0	30	9000
SH	F	Intermediate Brush	2.5	2.0	1.5	N/A	N/A	9.0	15.0	700	N/A	1250	4.5	15	9500
SH	Q	Alaskan Black Spruce	2.0	2.5	2.0	1.0	0.5	4.0	12.0	1500	1500	1200	3.0	25	8000
SH	D	Southern Rough	2.0	0.5	N/A	N/A	0.75	3.0	6.25	1250	1500	1500	2.0	30	9000
TU/L	Н	Short Needle Pine (Normal Dead)	1.5	1.0	2.0	2.0	0.5	0.5	7.5	2000	2000	1500	0.3	20	8000
TU/L	G	Short Needle Pine	2.5	2.0	5.0	12.0	0.5	0.5	22.5	2000	2000	1500	1.0	25	8000

		(Heavy Dead)													
TU/L	E*	Winter Hardwoods	1.5 (*1.0)	2.0	0.25	N/A	0.5 (*1.0)	0.5	4.75	2000	2000	1500	4.0*	25	8000
TU/L	R	Summer Hardwoods	0.5	0.5	0.5	N/A	0.5	0.5	2.5	1500	2000	1500	0.25	25	8000
TU/L	U	Western Long Needle Conifer	1.5	1.5	1.0	N/A	0.5	0.5	5.0	1750	2000	1500	0.5	20	8000
TU/L	P	Southern Pine Plantation	1.0	1.0	0.5	N/A	0.5	0.5	3.5	1750	2000	1500	0.4	30	8000
SB	K	Light Logging Slash	2.5	2.5	2.0	2.5	N/A	N/A	9.5	1500	N/A	N/A	0.6	25	8000
SB	J	Intermediate Logging Slash	7.0	7.0	6.0	5.5	N/A	N/A	25.5	1500	N/A	N/A	1.3	25	8000
SB	I	Heavy Logging Slash	12.0	12.0	10.0	12.0	N/A	N/A	46.0	1500	N/A	N/A	2.0	25	8000

National Fire Danger Rating System (NFDRS) Fuel Models - Narrative Descriptions

Grass and Grass/Shrub Fuels

Fuel Model A – This fuel model represents western grasslands vegetated by annual grasses and forbs. Brush or trees may be present but are very sparse, occupying less than one-third of the area. Examples of types where Fuel Model A should be used are cheatgrass and medusahead. Open pinyon-juniper, sagebrush-grass, and desert shrub associations may appropriately be assigned this fuel model if the woody plants meet the density criteria. The quantity and continuity of the ground fuels vary greatly with rainfall from year to year.

<u>Fuel Model L</u> – This fuel model is meant to represent western grasslands vegetated by perennial grasses. The principal species are coarser and the loadings heavier than those in Model A fuels. Otherwise the situations are very similar; shrubs and trees occupy less than one-third of the area. The quantity of fuels in these areas is more stable from year to year. In sagebrush areas Fuel Model T may be more appropriate.

<u>Fuel Model C</u> – Open pine stands typify Model C fuels. Perennial grasses & forbs are the primary ground fuel but there is enough needle litter &

Timber Understory and Timber Litter Fuels

Fuel Model H – Used for short-needled conifers (white pines, spruces, larches, & firs). In contrast to FM G fuels, FM H describes a healthy stand with sparse undergrowth and a thin layer of ground fuels. Fires in FM H are typically slow spreading and are dangerous only in scattered areas where the downed woody material is concentrated.

Fuel Model G – Used for dense conifer stands where there is a heavy accumulation of litter & down woody material. They are typically over mature & may be suffering insect, disease, & wind or ice damage—natural events that create a very heavy buildup of dead material on the forest floor. The duff & litter are deep and much of the woody material is >3" in diameter. The undergrowth is variable, but shrubs are usually restricted to openings. Types represented here are hemlock-Sitka spruce, coastal Douglas fir, and wind thrown or bug-killed stands of lodgepole pine & spruce.

<u>Fuel Model E</u> – Used after fall leaf fall for hardwood and mixed hardwood-conifer types where the hardwoods dominate. Fuel is primarily hardwood

branchwood present to contribute significantly to the fuel loading. Some brush & shrubs may be present but are of little consequence. Types covered by Fuel Model C are open, longleaf, slash, ponderosa, Jeffery, & sugar pine stands. Some pinyon-juniper stands may qualify.

Fuel Model N – This fuel model was constructed specifically for the sawgrass prairies of south Florida. It may be useful in other marsh situations where the fuel is coarse and reed like. This model assumes that one-third of the aerial portion of the plants is dead. Fast-spreading, intense fires can occur over standing water.

<u>Fuel Model S</u> – Alaskan and alpine tundra on relatively well-drained sites fit this fuel model. Grass and low shrubs are often present, but the principal fuel is a deep layer of lichens and moss. Fires in these fuels are not fast spreading or intense, but are difficult to extinguish.

Fuel Model T – The sagebrush-grass types of the Great Basin and the Intermountain West are characteristic of T fuels. The shrubs burn easily and are not dense enough to shade out grass and other herbaceous plants. The shrubs must occupy at least one-third of the site or the A or L fuel models should be used. Fuel Model T might be used for immature scrub oak and desert shrub associations in the West and the scrub oak-wire grass type of the Southeast.

leaf litter. It best represents the oak- hickory types & is a good choice for northern hardwoods and mixed forests of the Southeast. In high winds, the fire danger may be underrated because rolling and blowing leaves are not accounted for.

<u>Fuel Model R</u> – This fuel model represents hardwood areas after the canopies leaf out in the spring. It is the growing season version of FM E. It should be used during the summer in all hardwood and mixed coniferhardwood stands where more than half of the overstory is deciduous.

<u>Fuel Model U</u> – This fuel model represents the closed stands of western long-needled pines. The ground fuels are primarily litter and small branchwood. Grass and shrubs are precluded by the dense canopy but may occur in the occasional natural opening. Fuel Model U should be used for ponderosa, Jeffery, sugar pine stands of the West and red pine stands of the Lake States. Use FM P for southern pine plantations.

<u>Fuel Model P</u> – Closed, thrifty stands of long- needled southern pines are characteristic. A 2-4 inch layer of lightly compacted needle litter is the primary fuel. Some small diameter branchwood is present but the density of the canopy precludes more than a scattering of shrubs/grass. FM P has the high moisture of extinction characteristic of the Southeast. The corresponding model for other long-needled pines is FM **U**.

National Fire Danger Rating System (NFDRS) Fuel Models - Narrative Descriptions (continued) NFDRS fuel model descriptions

Shrub Fuels Slash & Blowdown Fuels

<u>Fuel Model B</u> – Mature, dense fields of brush six feet or more in height is represented by this fuel model. One-fourth or more of the aerial fuel in such stands is dead. Foliage burns readily. Model B fuels are potentially very dangerous, fostering intense, fast-spreading fires. This model is for California mixed chaparral, generally 30 years or older. The F model is more appropriate for pure chamise stands. The B model may also be used for the New Jersey pine barrens.

Fuel Model O – The O fuel model applies to dense, brush like fuels of the Southeast. In contrast to B fuels, O fuels are almost entirely living except for a deep litter layer. The foliage burns readily except during the active growing season. The plants are typically over six feet tall and are often found under open stands of pine. The high pocosins of the Virginia, North and South Carolina coasts are the ideal of Fuel Model O. If the plants do not meet the 6- foot criteria in those areas, Fuel Model D should be used.

Fuel Model F – Fuel Model F represents mature closed chamise stands and oak brush fields of Arizona, Utah, and Colorado. It also applies to young, closed stands and mature, open stands of California mixed chaparral. Open stands of pinyon-juniper are represented; however, fire activity will be overrated at low wind speeds and where ground fuels are sparse.

Fuel Model Q – Upland Alaska black spruce is represented by Fuel Model Q. The stands are dense but have frequent openings filled with usually flammable shrub species. The forest floor is a deep layer of moss and lichens, but there is some needle litter and small diameter branchwood. The branches are persistent on the trees, and ground fires easily reach into the crowns. This fuel model may be useful for jack pine stands in the Lake States. Ground fires are typically slow spreading, but a dangerous crowning potential exists. Users should be alert to such events and note those levels of SC and BI when crowning occurs.

Fuel Model D – This fuel model is specifically for the palmetto-gallberry understory-pine association of the southeast coastal plains. It can also be used for the so-called "low pocosins" where Fuel Model O might be too severe. This model should only be used in the Southeast because of the high moisture of extinction associated with it.

Fuel Model I – Fuel Model I was designed for clear-cut conifer slash where the total loading of materials less than six inches in diameter exceeds 25 tons/acre. After settling and the fines (needles and twigs) fall from the branches, Fuel Model I will overrate the fire potential. For lighter loadings of clear-cut conifer slash use Fuel Model J, and for light thinnings and partial cuts where the slash is scattered under a residual overstory, use Fuel Model K.

<u>Fuel Model J</u> – This model complements Fuel Model I. It is for clear-cuts and heavily thinned conifer stands where the total loading of material less than six inches in diameter is less than 25 tons per acre. Again as the slash ages, the fire potential will be overrated.

Model K – Slash fuels from light thinnings and partial cuts in conifer stands are represented by Fuel Model K. Typically the slash is scattered about under an open overstory. This model applies to hardwood slash and to southern pine clear-cuts where loading of all fuels is less than 15 tons/acre.

4.1.4 Indices and Components

- *Ignition Component (IC)* The Ignition Component is a rating of the probability that a firebrand will cause a fire requiring suppression action. Expressed as a probability; it ranges on a scale of 0 to 100. An IC of 100 means that every firebrand will cause an "actionable" fire if it contacts a receptive fuel. Likewise an IC of 0 would mean that no firebrand would cause an actionable fire under those conditions. Note the emphasis is on action
- **Spread Component (SC)** The Spread Component is a rating of the forward rate of spread of a headfire. Deeming, et al, (1977), states that "the spread component is numerically equal to the theoretical ideal rate of spread expressed in feet-per-minute. Highly variable from day to day, the Spread Component is expressed on an open-ended scale; thus it has no upper limit.
- Energy Release Component (ERC) The Energy Release Component is a number related to the available energy (BTU) per unit area (square foot) within the flaming front at the head of a fire. Daily variations in ERC are due to changes in moisture content of the various fuels present, both live and dead. Since this number represents the potential "heat release" per unit area in the flaming zone, it can provide guidance to several important fire activities. It may also be considered a composite fuel moisture value as it reflects the contribution that all live and dead fuels have to potential fire intensity. It should also be pointed out that the ERC is a cumulative or "build-up" type of index. As live fuels cure and dead fuels dry, the ERC values get higher thus providing a good reflection of drought conditions. The scale is open-ended or unlimited and, as with other NFDRS components, is relative. Conditions producing an ERC value of 24 represent a potential heat release twice that of conditions resulting in an ERC value of 12.

As a reflection of its composite fuel moisture nature, the ERC becomes a relatively stable evaluation tool for planning decisions that might need to be made 24 to 72 hours ahead of an expected fire decision or action. Since wind does not enter into the ERC calculation, the daily variation will be relatively small. The 1000 hr time lag fuel moisture (TLFM) is a primary entry into the ERC calculation through its effect on both living and dead fuel moisture inputs. There may be a tendency to use the 1000 hr TLFM as a separate "index" for drought considerations. A word of caution – any use of the 1000 hr TLFM as a separate "index" must be preceded by an analysis of historical fire weather data to identify critical levels of 1000 hr TLFM. A better tool for measurement of drought conditions is the ERC since it considers both dead and live fuel moistures.

- Lightning Occurrence Index (LOI) The Lightning Occurrence Index is a numerical rating of the potential occurrence of lightning-caused fires. It is intended to reflect the number of lightning caused fires one could expect on any given day. The Lightning Occurrence is scaled such that a LOI value of 100 represents a potential of 10 fires per million acres. It is derived from a combination of Lightning Activity Level (LAL) and Ignition Component. To effectively develop this index the user must perform an extensive analysis to develop a local relationship between thunderstorm activity level and number of actual fire starts that result. Since our ability to accurately quantify thunderstorm intensity is limited it is difficult to develop a relationship between activity and fire starts. Thus the Lightning Occurrence Index is seldom used in fire management decisions. Local fire managers should however monitor the lightning activity level provided by the National Weather Service and with a little experience can develop their own rating of lightning fire potential.
- **Human Caused Fire Occurrence Index (MCOI)** This is a numeric rating of the potential occurrence of human-caused fires. Similar to the Lightning Occurrence Index, this value is intended to reflect the number of human-caused fires one could expect on any given day. It is derived from a measure of daily human activity and its associated fire start potential, the human caused fire risk input, and the ignition component. The MCOI is scaled such that the number is equal to 10 times the number of fires expected that day per million acres. An index value of 20 represents a potential of 2 human caused fires per million acres that day if the fuel bed was receptive for ignition.

The original developers of the National Fire Danger Rating System recognized that "where the total fires per million acres average twenty or fewer, the evaluations are questionable". This has been validated through application. As with the Lightning Occurrence Index, the Human-caused Fire Occurrence Index requires considerable analysis to establish a local relationship between the level of human activity and fire starts. Since human activity is fairly constant throughout the season and human-caused fire occurrence in, for example, the Pacific Northwest, is relatively low in terms of fires per million acres per day, most analyses result in very low risk inputs that don't change much from day to day. Few fire managers, if any, are using this index in making day to day decisions.

- **Burning Index (BI)** The Burning Index is a number related to the contribution of fire behavior to the effort of containing a fire. The BI is derived from a combination of Spread and Energy Release Components. It is expressed as a numeric value closely related to the flame length in feet multiplied by 10. The scale is open ended which allows the range of numbers to adequately define fire problems, even in time of low to moderate fire danger. Table 1, adapted from Deeming et al (1977) gives several cross references that relate BI to fireline intensity and flame length with narrative comments relative to the **effects** on prescribed burning and fire suppression activities. It's important to remember that computed BI values represent the near upper limit to be expected on the rating area. In other words, if a fire occurs in the worst fuel, weather and topography conditions of the rating area, these numbers indicate its expected fireline intensities and flame length.

 Studies have indicated that difficulty of containment is not directly proportional to flame length alone but rather to fireline intensity, the rate of heat release per unit length of fireline, (Byram 1959). The use of fireline intensity as a measure of difficulty shows that the containment job actually increases more than twice as fast as BI values increase. It is still safe to say that flame length is related to fireline intensity because BI is based on flame length
- *Fire Load Index (FLI)* Fire Load Index is a rating of the maximum effort required to contain all probable fires occurring within a rating area during the rating period. The FLI was designed to be the end product of the NFDRS the basic preparedness or strength of-force pre-suppression index for an administrative unit. It was to be used to set the readiness level for the unit. It focuses attention upon the total fire containment problem. Because the FLI is a composite of the various components and indexes of the NFDRS, including the local lighting and human caused fire risk inputs, the comparability of values varied significantly from one unit to another. To be useful managers must establish the relationship between the FLI calculated for their unit and the true fire containment effort needed. The FLI is represented as a number on a scale of 1-100. It provides no specific information as to the nature of the potential fire problem as individual indexes and components do. Because the Fire Load Index is a composite of several pieces of the NFDRS, its utility is impacted by of the inherent weaknesses of the individual components and indexes. Very few fire management decisions are made based on the Fire Load Index alone.
- *Keetch-Byram Drought Index (KBDI)* This index is not an output of the National Fire Danger Rating System itself but is often displayed by the processors used to calculate NFDRS outputs. KBDI is a stand-alone index that can be used to measure the effects of seasonal drought on fire potential. The actual numeric value of the index is an estimate of the amount of precipitation (in 100ths of inches) needed to bring the soil back to saturation (a value of 0 is complete saturation of the soil). Since the index only deals with the top 8 inches of the soil profile, the maximum KBDI value is 800 or 8.00 inches of precipitation would be needed to bring the soil back to saturation. The Keetch-Byram Drought Index's relationship to fire danger is that as the index value increases, the vegetation is subjected to increased stress due to moisture deficiency. At higher values desiccation occurs and live plant material is added to the dead fuel loading on the site. Also an increasing portion of the duff/litter layer becomes available fuel at higher index values. If you are using the 1978 fuel models, KBDI values can be used in conjunction with the National Fire Danger Rating System outputs to aid decision making. If you are

using the modified NFDRS fuel models that were developed in 1988, KBDI values are a required input to calculate daily NFDRS outputs. Since most fire danger stations are not being operated when the soil is in a saturated condition, it is necessary to estimate what the KBDI value is when daily observations are began. The technical documentation describing the KVBDI includes methodology to estimate the initiating value is included in the attached reference list. Most processors include a default initiation value of 100.

4.1.5 Lightning Activity Level (LAL)

A scale developed with the National Fire Danger Rating System (NFDRS) to describe lightning activity.

Table 4.1.5-1 Lightning Activity Level (LAL)

Scale	Description
LAL 1	No Thunderstorms
LAL 2	Isolated thunderstorms. Light rain will occasionally reach the ground. Lightning is very infrequent, 1-5 cloud to ground strikes in a 5 minute period.
LAL 3	Widely scattered thunderstorms. Light to moderate rain will reach the ground. Lightning is infrequent, 6-10 cloud to ground strikes in a 5 minute period.
LAL 4	Scattered thunderstorms. Moderate rain is commonly produced. Lightning is frequent, 11-15 cloud to ground strikes in a 5 minute period
LAL 5	Numerous thunderstorms. Rainfall is moderate to heavy. Lightning is frequent and intense, greater than 15 cloud to ground strikes in a 5 minute period.
LAL 6	Same as LAL 3 except thunderstorms are dry (no rain reaches the ground). This type of lightning has the potential for extreme fire activity and is normally highlighted in fire weather forecasts with a Red Flag Warning.

4.1.6 Pocket Cards

http://fam.nwcg.gov/fam-web/pocketcards/default.htm

The Fire Danger Pocket Card provides a format for interpreting and communicating key index values provided by the National Fire Danger Rating System. The <u>objective</u> is to lead to greater awareness of fire danger and subsequently increased firefighter safety. The Pocket Card provides a description of seasonal changes in fire danger in a local area. It is useful to both local and out-of-area firefighters.

The Pocket Card has very important day-to-day "presuppression" uses. When the morning and afternoon weather is read each day, the actual and predicted indices are announced. Firefighters can reference their card and assess where today falls in the range of historical values for danger-rating. This important information should be discussed at morning crew meetings, tailgate safety meetings, incident briefings, etc.

Local fire management personnel can produce the cards using Fire Family Plus. Cards should be developed locally with local fire management involvement to meet local fire management needs.

4.2 References

Bradshaw, Larry S.; Deeming, John E.; Burgan, Robert E.; Cohen, Jack D compilers. The 1978 National Fire-Danger Rating System: technical documentation. General Technical Report INT-169. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station; 1984. 44 p.

Burgan, Robert E. 1988. 1988 Revisions to the 1978 National Fire-Danger Rating System. Res. Pap. SE-273. Asheville, NC: U.S. Department of Agriculture, Forest Service, Southeastern Forest Experiment Station. 144 p..

Schlobohm, Paul, and Brain, Jim; 2002; Gaining an Understanding of the National Fire Danger Rating System, NWCG-PMS932, 58p

5 Fire Behavior

5.1 Assessing Current and Expected Fire Behavior

5.1.1.1 Examine the current fire situation (location, factors, spread direction & fire behavior)

- Fuel: Is it burning in grass, litter, or into shrubs and crowns?
- Fuel Moisture: are fuels dry? Are they still green?
- Terrain: Is it burning upslope, downslope?
- Weather: Is the wind pushing it, is it sheltered from the wind?
- Fire Behavior: is it smoldering, creeping, or actively spreading? Are the flames low, or is it burning hot?

5.1.1.2 Evaluate the unburned areas where you are and will be working

- Which spread directions do you expect to be active?
- Which seems like the spread directions that will produce the most problems?
- Which of the spread directions are of most concern to you?

5.1.1.3 Anticipate the expected fire situation in those areas

- Fuel: What fuel is it going to move into in that direction? Will it burn hotter and faster? Slower & cooler?
- Fuel Moisture will the change in fuel moisture encourage extreme fire behavior?
- Terrain slope reversal? Flat to upslope? Will the changes increase or reduce fire behavior?
- Weather As the fire moves, will it be more exposed to the wind? Will the wind increase in the future?
- Fire Behavior do you anticipate the fire behavior, based on your anticipated changes being manageable?

5.1.1.4 Assess Fire Risk: Interpret Ignition & Crown Fire Potential

- Is it the typical dry period for the area?
- Is the overall drought situation enough to make it worse?
- Has there been recent crown fire on this or other fires in the area?
- Is the humidity, and fine fuel moisture, low enough to encourage intense surface fire?
- Is backing fire causing torching? If so, expect crown fire with head fire.
- Is fire moving up ladder fuels? Expect at least short crown fire runs.

5.1.1.5 Project Fire Spread, Flame Length and Spotting Distance

- Select the proper tool for the assessment. FLAME, Surface Fire Behavior Lookup Tables and Nomographs, Spotting Nomograms, and crown fire assessment tools are included here
- Can you calibrate projections with current fire behavior?
- How precise do the projections need to be?

5.1.1.6 Determine decision thresholds to insure LCES

- Determine time frames for escape to safety and escape routes that make sense in each situation. What windspeeds or changes in fire behavior will render those time frames insufficient?
- Identify best locations and methods for lookout to monitor and validate your assessment
- Insure that weather and fire behavior observations are communicated regularly to the entire crew.
- Will Fatigue and Logistics factors impact these decisions?

5.1.1.7 Document your Assessment

- Record your observations and assumptions
- Use worksheets and include notes for each assessment
- Include assessments and decisions in personal logs
- Remember: "If you're not keeping score, it's just practice"

5.1.2 Observing Current Fire Behavior

Table 5.1.2-1 Rate of Spread Estimator

5	Spread D	istance (ft)	
1	3	5	10	ROS
Time	in Minutes	(') and sec	onds (")	ch/hr (ft/min)
3'38"	10'55"	18'10"	36'22"	1/4 (1/4)
1'49"	5'27"	9'05"	18'10"	1/2 (1/2)
55"	2'44"	4'33"	9'05"	1 (1)
36"	1'49"	3'02"	6'04"	1.5 (1-2)
27"	1'22"	2'16"	4'33"	2 (2)
18"	55"	1'31"	3'02"	3 (3)
14"	41"	1'08"	2'16"	4 (4-5 ft)
11"	33"	55"	1'49"	5 (5-6)
9"	27"	45"	1'31"	6 (6-7)
8"	23"	39"	1'18"	7 (7-8)
7"	20"	34"	1'08"	8 (9)
6"	18"	30"	1'01"	9 (10)
5"	16"	27"	55"	10 (11)
4"	11"	18"	36"	15 (16-17)
3"	8"	14"	27"	20 (22)
2"	7"	11"	22"	25 (27-28)
2"	5"	9"	18"	30 (33)
2"	5"	8"	16"	35 (38-39)
1"	4"	7"	14"	40 (44)
1"	3"	5"	11"	50 (55)
1	3	5	10	
S	pread D	istance	(ft)	

Use this chart as an aid to estimate rate of spread

Here's how:

- 1. Measure out 1, 3, 5 or 10 feet. Mark distance with two points.
- 2. Time fire as it spreads between your two points and record this time.
- 3. Using the appropriate spread distance column (1, 3, 5 or 10), place your time on the sheet between two times listed, your "bracketed" times.
- 4. Move to the right with the bracket times. This is your ROS range.

Time Key 1' 49" = 1 minute and 49 seconds 36" = 36 seconds

Example: Say you're monitoring a backing fire burning in light ponderosa needle cast. You measure out 3 feet, and place two stones at each of the points. You time the fire as it moves between the stones. In this case, say the fire takes 1 minute 6 seconds (1'6") to move 3 feet. Looking at the 3 column, you move down until you see two times which bracket our time: 1'22" and 55". You then scroll right and see that the rate of spread is between 2 and 3 chains per hour.

Flame Length vs. Flame Height

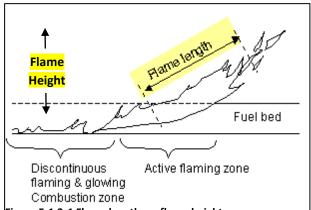
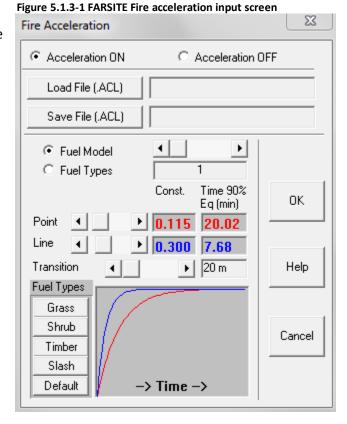


Figure 5.1.2-1 Flame length vs. flame height


Flame Length: The distance measured from the average flame tip to the middle of the active flaming zone at the base of the fire. It is measured on a slant when the flames are tilted due to effects of wind and slope.

Flame Height: The average height of flames as measured vertically, up and down. It is estimated by comparing the flame to a nearby object of known height. Flame height is needed to estimate spot distance from a burning pile.

5.1.3 Acceleration Effect on Rate of Spread

Fire acceleration is defined as the rate of increase in fire spread rate. It affects the amount of time required for a fire spread rate to achieve the theoretical steady state spread rate given 1) its existing spread rate, and 2) constant environmental conditions. Because initiating fires can take 20 minutes to over an hour to reach a steady spread rate, fire behavior and fire growth can be significantly over predicted in the first burn period. Conversely, calibration efforts, based on this early growth period, that do not consider acceleration can lead to significant under prediction in subsequent burn periods.

At this time, fire acceleration is implemented only in FARSITE, using the model developed for the Canadian Forest Fire Behavior Prediction System (Alexander et. al. 1992). It is active by default, but can be turned off as a model input. As implemented, inputs are segregated by type of Ignition (point vs. line source) and potentially by fuel type (grass, shrub, timber, slash, a default, or by fuel model). Grass fuels are expected to have more rapid acceleration rates (shorter time to reach equilibrium) than fuel types with larger woody material (slash etc.).

5.1.4 Surface Fire Behavior

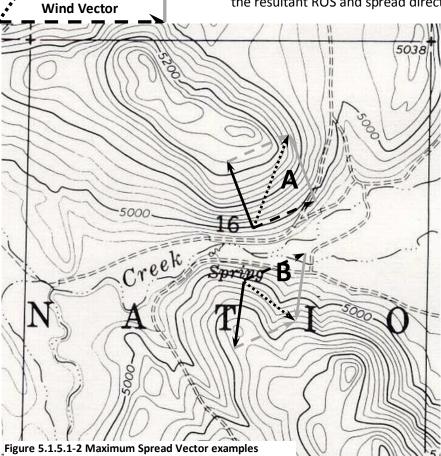
This section highlights surface fire behavior assessments and references tools used in the process:

- A **Worksheet** (5.4.1) designed to conduct a complete assessment for surface fire behavior and growth using either the lookup tables or the nomographs.
- EWS Tables (5.4.2) for estimating Effective Windspeed from Slope and Midflame Windspeed. The Effective Windspeeds that result from these tables assumes that wind is blowing ± 30° from upslope. For other situations, manual vectoring without using the EWS Table would be necessary.
- Surface Fire Behavior Lookup Tables (5.4.3) for making estimates of surface fire spread and flame length. 10-hr and 100-hr moisture values of 6% and 8% are used in the lookup tables. Two cautions to consider with these tables. (1) The *20ft/FCST wind line is provided as a convenience, but only works with stated WAF & no slope adjustments. (2) Backing & flanking columns are only rough estimates based on ½ & 1 mph windspeeds. Use BehavePlus for more precise estimates.
- Surface Fire Behavior Nomographs (5.4.4)
- Flanking and Backing Fire Behavior Nomograms (5.4.5)

5.1.4.1 Inputs

- Time and Place from Section 6 (Burn Period, Duration)
- Fuel/Terrain from Section 2 (Surface Fuel Model, Canopy Cover, Aspect, Slope)
- Dead Fuel Moisture from Section 3 (Temp, R,H, Month, Time, Elev Diff, Shading, Slope)
- Live Fuel Moisture from Section 3 (Herbaceous Moisture Content, Woody Moisture Content)
- Effective Windspeed and Direction from Sections 1 (20 ft & Midflame) and 5 (Effective Windspeeds)

5.1.4.2 Output


- Fire Behavior from Section 3(Probability of Ignition) & 5 (Spread, Flame Length)
- Fire Size and Shape from Section 6 (Spread Distance, Fire Size, Fire Perimeter, Fire Shape)

5.1.5 Vectoring Fire Behavior (Cross Slope Winds & Backing/Flanking Spread)

5.1.5.1 Projections With Cross Slope Winds

Figure 5.1.5.1-1 Maximum Spread Vector Projecting fire spread with cross slope winds utilizes a vectoring process, where the effect of wind and the effect of slope on Rate of Spread (ROS) may be represented by separate vectors that represent both a magnitude and a direction. The resultant vector represents both a direction and magnitude of maximum spread in that Slope Vector direction.

- **Slope Vector** is drawn directly upslope and estimated by calculating ROS with the estimated slope steepness and Zero (0) windspeed for inputs.
- Wind Vector is drawn in the direction of the wind and estimated by calculating ROS with the estimated windspeed and Zero (0) slope.
- Maximum Spread Vector can be drawn as shown and measured to determine the resultant ROS and spread direction

5.1.5.2 Backing and Flanking Spread Projections

In example A here, wind is crossing more upslope, resulting in an enhanced maximum ROS.

In example B, wind is crossing more downslope, resulting in a reduced maximum ROS.

With winds blowing downslope (±30°), the difference between the spread rates is the resulting ROS using the direction from the larger vector.

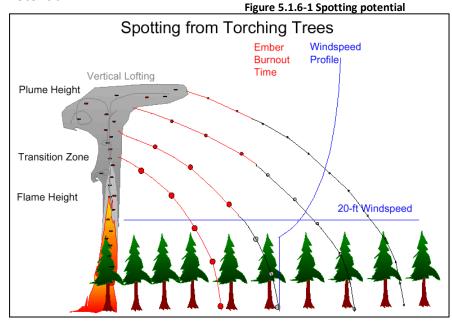
If the vectoring process is completed manually, fireline intensity (FLI) and flame length (FL) can be calculated from ROS and Heat Per Unit Area (HPA) using these calculations

$$FLI = (ROS * HPA)/55$$

$$FL = .45 * FLI^{.46}$$

Estimating flanking and backing fire behavior provide important insights for safety and control activities on the fireline, as well as accurate estimates fire growth around an active fire perimeter. These can be estimated utilizing the geometry of the elliptical fire shape. The nomogram in section 5.4.5 provides a quick method for estimating Rate Of Spread and Flame Length (FL) for these spread directions.

5.1.6 Assessing Spotting Fire Behavior Potential


Evaluating the importance of spotting fire behavior requires the integration of three factors:

- the firebrand source
- the distance the firebrand is carried into the wind
- the probability of igniting a new fire at the downwind location.

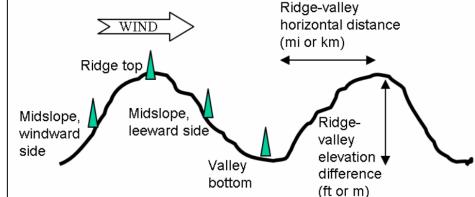
Short-Range Spotting is not generally considered as significant in the growth if wildfires, because the advancing fire usually overruns the developing spot fire.

Long-Range Spotting is differentiated from short-range spotting, primarily because

firebrands are being lofted by a convection column and carried beyond the immediate fire area.

The table in section 5.1.6.1 compares the spotting assessment in the different fire behavior systems.

Estimating Maximum Spotting Distance


Both the included Spotting Distance Nomograms (with the associated worksheet in Section 5.5) and BehavePlus provide methods for estimating the Maximum Spotting Distance from a Torching Tree, or trees.

As suggested by the graphic above, the model requires identification of *tree species, height, and DBH* to estimate the flame height and duration from the torching tree that will initiate the lofting of the ember into the windfield.

Further, the *open windspeed* is used to suggest how far the fire brand will be transported as it falls back to the ground. The nomogram, because it assumes level ground uses the surface (20ft) windspeed and direction.

The graphic here depicts additional inputs to the BehavePlus spotting module. In mountainous terrain, *ridge top winds* are used if wind is blowing across valleys as shown. The shape of the valley is considered with inputs for *Ridge-to-Valley* distance and elevation difference.

The downwind *Canopy, or Tree Cover, Height* (reduced for open canopies) is used to factor out embers intercepted by the canopy before reaching surface fuels.

Figure 5.1.6-2 Topography related to spotting distance

Integrating Spotting Spread into Fire Growth Projections

FARSITE, FLAMMAP, and FSPro attempt to integrate the estimate of the number of embers and the distribution of distances they travel into the fire growth projection. Estimating maximum spotting distance from nomograms or BehavePlus only suggests an outer perimeter for spotting potential.	
behaverius only suggests an outer perimeter for spotting potential.	

5.1.6.1 Comparing Systems for Modeling Long Range Spotting Potential

Table 5.1.6.1-1 Systems that model long range spotting

	Nomogram System	BehavePlus System	Spatial Grid System Short Term (STFB/FLAMMAP)	Spatial Vector System Near Term (NTFB/FARSITE)			
	Estimates only maxin	num spotting distance					
Model Outputs and Limitations	 Assumes single torching tree Assumes level terrain between source location and downwind destination Subjective evaluation of crown fire initiation 	 Crown Fire initiation model available, but not linked to the spotting module Ember size not evaluated 	 Estimates a distribution of spotfire distance and direction Uses only Passive (torching) and Active Crown fire for source of embers. Spotting not modeled in FLAMMAP 3 The same Species and DBH (Grand Fir, 20cm DBH) are used for the entire landscape. 				
Spotting Source	 Torching Tree Species Torching Tree DBH Torching Tree Height 	 Torching Trees Torching Tree Species Torching Tree DBH Torching Tree Height Number of Torching Trees (1-30 trees) Wind-Driven Surface Fire Flame Length Burning Piles Flame Height 	 Torching Tree default is Grand Fir, 20cm DBH. Canopy Cover (CC) and Crown Fraction Burned (CFB) determines # of torching trees Faster spread rates increase the # of opportunities for lofting, though STFB/FLAMMAP is more limited User set Spot Probability used to determine whether node (STFB/FLAMMAP) or vertex (NTFB/FARSITE) lofts ember More embers will be lofted with finer landscape or distance resolution Fewer nodes than 				
Firebrand Transport Inputs	 20-ft windspeed Downwind Canopy Height Downwind Canopy Cover 	 20-ft windspeed Torching Tree Location Ridge-to-Valley Distance Ridge-to Valley Elev. Diff. Downwind Canopy Height Downwind Canopy Cover 	 Firebrand size and loftin source 20 ft windspeed Uses Landscape downwing characteristics Less likely embers will travel max dist than NTFB/FARSITE				
Ignition	Dry Bulb Temperature	Dry Bulb Temperature	Embers tracked until they landing on burnable pixel a	always ignite			
Probability Inputs	Shading1-hr Moisture Content	Shading1-hr MoistureContent	With fewer embers, user should use higher Spot Probability than NTFB/FARSITE	With more embers, user should use lower Spot Probability than STFB/FLAMMAP			

5.1.7 Crown Fire Behavior

5.1.7.1 Approaches to Modeling Crown Fire

Table 5.1.7.1-1 - Crown fire models

	SURFACE-FIRE CONTROL	CROWN-FIRE CONTROL
	(Finney, 1998)	(Scott/Reinhardt, 2001)
Surface Fire Behavior	 Uses Rothermel Surface Fire Model to estimate Rate of Spread (ROS), Flame Length (FL), and Fireline Intensity (FLI) 	 Uses Rothermel Surface Fire Model to estimate Rate of Spread (ROS), Flame Length (FL), and Fireline Intensity (FLI)
Passive Crown Fire	 Uses Van Wagner Crown Fire Initiation Model to distinguish surface fire behavior from crown fire (passive and active). Calculates Crown Fraction Burned (CFB) between 0 & 1. Concept created by Van Wagner for use as a transition scale between surface and active crown fire. CFB calculations produce lower values than Crown Fire Control Method. Spread rate and flame length for Passive Crown fire assumed to be the same as the surface fire spread rate. 	 Uses Van Wagner Crown Fire Initiation Model to distinguish surface fire behavior from crown fire (passive and active). Calculates Crown Fraction Burned (CFB) between 0 & 1. Concept created by Van Wagner for use as a transition scale between surface and active crown fire. CFB calculations produce higher values than Surface Fire Control method Spread rate for Passive Crown fire is determined to be intermediate between the estimated Crown Fire and Surface Rates Of Spread based on the CFB Combines estimates of surface and crown fuels consumed and actual spread rate to determine
Active Crown Fire	 Uses Van Wagner criteria for Active Crown Fire to distinguish Passive from Active Crown Fire. Because calculated CFB is lower is lower than what is produced by the Crown Fire Control method, active crown fire spread rates remain less than that estimated by Rothermel model even after active crown fire is predicted. Combines estimates of surface and crown fuels consumed and actual spread rate to determine final fire intensity. Estimates Flame Length from fireline intensity using Thomas' (1963) equation 	 final fire intensity. Uses Van Wagner criteria for Active Crown Fire to distinguish Passive from Active Crown Fire. Uses Rothermel's Crown Fire Model to estimate Crown Fire ROS. Default result is based on the average rate, but Max ROS can be estimated by setting multiplier to 1.7. Combines estimates of surface and crown fuels consumed and actual spread rate to determine final fire intensity Estimates Flame Length from fireline intensity using Thomas' (1963) equation.

- Both approaches identify the threshold for predicting crown fire initiation and active crown fire spread using the same criteria, based on the Van Wagner Crown Fire Initiation model.
- BehavePlus identifies the fire type for a given scenario but does not provide estimated separate passive crown fire behavior characteristics (ROS, FL). The user must select surface or crown fire characteristics from separate tables based on the fire type (surface or active) expected.
- The Surface Fire Control model (implemented only in FLAMMAP, FARSITE, and FSPro) produces specific fire behavior characteristics for surface and active crown fire. Passive crown fire is accounted for by modeling new spot fires at frequencies and distances estimated separately...

5.1.7.2 Comparisons and critiques

Cruz, M.G. and M.E. Alexander. 2010. Assessing crown fire potential in coniferous forests of western North America: a critique of current approaches and recent simulation studies. International Journal of Wildland Fire 19(4):377-398.

Scott, Joe H. 2006. Comparison of crown fire modeling systems used in three fire management applications. Res. Pap. RMRS-RP-58. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 25 p.

5.2 Selecting The Assessment Tool

Assuming that most users will be using geospatial tools such as WFDSS STFB & NTFB or FARSITE & FLAMMAP to project fire growth and behavior from larger fire perimeters, this fire behavior section has been developed as both a desk and field guide for basic projections from one or several locations on the fireline. Resources and tools provided in other sections, such as Fine Fuel Moisture and Probability of Ignition estimation, are available and should be considered a part of these systems as needed.

To support those analyses for fireline decisions, three systems are represented here:

The Fireline Assessment Method (FLAME) in Section 5.3.

Purpose: Provided as the first fire behavior processor taught in the NWCG Fire Behavior series, it is intended primarily for assessments conducted on the fireline and helping prospective fireline supervisors learn how important various fire environment factors are. It expects the user to identify both a current situation (including an assessment of current fire spread) and a future one. Using the changes discovered evaluating the two situations, it produces a Rate of Spread (ROS) Ratio and includes a process for converting that into either a spread distance or a spread time that can be used for evaluating tactical time frames and escape routes.

Process: Observe current fire spread rate, distance, or time. Identify next big change (wind, fuel, slope reversal). Determine Effective Windspeed (EWS) Ratio from current and expected wind scenarios using observations and/or forecasts. Basic fuel type (grass, litter, shrub/crown) and slope changes using current and expected scenarios. Estimate ROS Ratio and expected spread distance or time for expected situation.

Limitations: Does not calculate a flame length, no spotting distance assessment incorporated. Fuel moisture incorporated only subjectively.

• Lookup Tables, Nomograms and Nomographs in Section 5.4 and 5.5

Purpose: Objectively determine surface fire behavior (Rate of Spread and Flame Length) from a set of current or expected fire environment (fuel, fuel moisture, slope, wind) inputs. Estimate maximum spotting distance and crown fire potential.

Process: Using the Surface Fire Behavior Worksheet in Section 5.4.1, identify Fuel/Terrain, estimate Live and Dead Fuel Moistures, determine an Effective Windspeed, and project a spread rate and flame length using either a lookup table or nomograph for the selected fuel model. Maximum Spotting Distance Is estimated using the spotting distance nomograms in Section 5.5.2. Crown Fire Potential may be estimated using the charts in section 5.5.3

Limitations: Spotting Distance nomograms are for single tree only and do not account for position in mountainous terrain.

BehavePlus system in Section 5.6

Purpose: Comprehensive set of single scenario fire behavior models and tools.

Process: Identify processes to employ (Surface Fire, Crown Fire, Elliptical Fire Size And Shape, Spotting Distance, Crown Scorch, Tree Mortality, Probability Of Ignition, Safety Zone Size). Provide fire environment inputs for selected processes, outputs in tabular and graphic format.

Limitations: Limitations of it is best to use a range of			
site.	, , , , , , , , , , , , , , , , , , ,		

5.3 Fireline Assessment Method (FLAME)

5.3.1 FLAME Worksheet

Date:	Time:	Incident	•	Observer:					
Date.		Initial A	pplication						
	CURRENT Slope-Aspect-Position, Voction (backing, flanking,	Vind, RH, Spread	EXPECTED Fuel Type, Slope-Aspect-Position, Wind, RH, Spread Direction (backing, flanking, headfire).						
Next Big Change(s):									
			Application						
	C	Surrent - RELATIVE	HUMIDITY - Exp	ected					
		Current - FUEL	TYPE - Expected	<u> </u>					
		Litter (surface)	□ Litter (surface	•					
		Crown (aerial) □ Grass (surface) □	□ Crown (aerial□ Grass (surface						
		VE WINDSPEE	•	<u>, </u>					
			EXPECTED \	*					
Eve level	winds (observed			Forecast Windspeed (20 ft)					
	winds at fire (Fig	-	Pre	edicted Winds at fire (Fig A)					
	Wind (Fig B)	,		Midflame Winds (Fig B)					
	tribution (Fig C -	⊦/-)	S	Slope contribution (Fig C +/-)					
	ffect Wndspd (E\			Expected Effect Wnspd (EWS)					
	o (compare curre	·							
	/S/smaller EWS (•							
	-	·	Application						
ROS-RATI	ROS-RATIO (Table 2) □ Expected Faster ↓ □ Expected Slower ↓								
Observed	Observed Spread (Obs spread÷ROS-Ratio) Obs Spread X ROS-Ratio								
Time	Fire Re	havior & Weath	er Observation	on – ENSURE LCES					
	i ii c De	ilatioi a meati	o. Obscivatio	C. LINCOILE LOLO					

5.3.2 Background

The graph here identifies how the FLAME processor uses established fire behavior models to produce estimates of fire spread for groups of similar fuels. Using Effective Windspeed (EWS) as the primary factor, spread rates can be compared based on changes in windspeed and/or changes in fuel type to arrive at an estimate of change, or ROS-Ratio. The ROS-Ratio can demonstrably assist in identifying critical fireline threats. This graph can also be used to produce approximate estimates of spread rates for each of the fuel types based on the observed or forecasted effective windspeed.

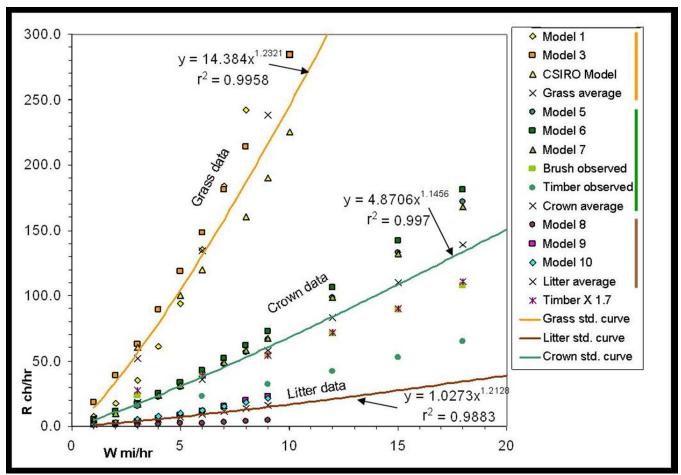


Figure 5.3.2-1 ROS ratio and windspeed in FLAME

5.3.3 FLAME Process

- <u>INITIAL APPLICATION</u>: requires description of *current* fire environment (wind, slope, & fuel) & fire behavior, *expected* fire environment & fire behavior, and identification of "*Next Big Change*". Suitable for all firefighters and draws upon concepts learned in S190 (Introduction to Wildland Fire Behavior).
- <u>STANDARD APPLICATION</u>: requires assessment of fuels & fuel moisture for crown fire potential, adjustment of wind forecasts to Effective Windspeed (EWS), & estimation of the change in Rate of Spread, or *ROS-Ratio*. All single resource bosses should be able to take a forecast, evaluate the effects of terrain and time on their expected winds, combine that with fuels, slope, & spread direction, and estimate the expected change in fire behavior. Concepts and Skills taught in S290 (Intermediate Wildland Fire Behavior)
- <u>COMPLETE APPLICATION</u>: requires good observation/estimate of fire spread rates, and application of expected changes to estimate new spread rates, times, and/or distances. Strike Team Leaders need to insure that escape routes are planned effectively and can use this tool to evaluate plans put in place.

5.3.4 Effective Windspeed (EWS) Ratio & Rate of Spread (ROS) Ratio Tables

Table 5.3.4-1 EWS and ROS ratio tables in FLAME
Table 1. Effective Windspeed (EWS)-Ratio Compare the EWS for current and expected conditions. The resulting EWS-Ratio is the bigger EWS divided by the smaller EWS.

					SM	IALL	ER E	FFE	CTIV	ΈW	INDS	PEE	D -
		back	flank	2	3	4	5	6	7	8	10	12	14
	40	80	40	20	13	10	8	7	6	5	4	3	3
	36	72	36	18	12	9	7	6	5	5	4	3	3
1	32	64	32	16	11	8	6	5	5	4	3	3	2
	28	56	28	14	9	7	6	5	4	4	3	2	2
	24	48	24	12	8	6	5	4	3	3	2	2	2
ı H	20	40	20	10	7	5	4	3	3	3	2	2	1.5
l d	16	32	16	8	5	4	3	3	2	2	2	1	
ğ	14	28	14	7	5	4	3	2	2	2	1.5		,
\\ \E	12	24	12	6	4	3	2.5	2	2	1.5		,	
EFFECTIVE WINDSPEED	10	20	10	5	3	2.5	2	1.5	1.5		,		
∣≧	8	16	8	4	3	2	1.5	1					
ျှ	6	12	6	3	2	1.5	1		Sne	cial (Cases	s for	RO
正	5	10	5	2.5	2	1			-		slash		
	4	8	4	2	1						uel is		
GER	3	6	3	1.5					do	uble 1	the R	OS-F	Ratio
ı O	_	_	_		-				• Fo	r mix	ed co	nditic	ns i

2

Special Cases for ROS-Ratio (below)

14

1.5

16

3

2

2

2

1.5

20

2

2

1.5

1.5

24

2

1.5

1.5

30

1

1

- ROS in slash is about 1.5x ROS in litter.
- If your fuel is compact short needle litter, double the ROS-Ratio
- For mixed conditions (fuel types and/or wind adjustments), estimate both combinations. Consider both average and maximum results.

EWS-Ratio

Because wind is the biggest single factor in assessing potential fire behavior, evaluating the change in wind speed over time and across the landscape is a critical skill.

Table 1 is not a required lookup. The EWS-Ratio can be estimated by simply comparing the current and future windspeeds.

ROS-Ratio

2

2

flank

<u>ŏ</u>

8

More experienced users with only this ROS-Ratio table, based on expected changes in effective windspeed, can quickly identify whether the expected change in fire spread will threaten fireline safety.

In most cases, where wind and fuel changes work together, the left portion of the table applies. Only if the factors oppose each other, such as with slope reversals from downslope in grass to litter upslope, would the right columns apply.

Table 2. Rate Of Spread (ROS)-Ratio Table (Compare current & expected EWS & Fuel)

s	EWS-	no fuel		igger EW Faster F		Use right side ⇒ of table only if the		r EWS irass	EWS-
,	ratio	change	litter to crown	litter to grass	Crown to grass	grass situation calls	Crown to grass	Litter to grass	ratio
	1	1	4	14	4	for lower winds, such as fire backing	<u>4</u>	<u>14</u>	1
	2	2	10	30	8	in grass becoming	2	<u>5</u>	2
	3	4	15	60	13	headfire in litter or	1	3	3
	4	5	20	80	20	crown. Bold Italics	1.5	3	4
	5	7	30	100	27	here mean faster ROS in grass	2	<u>2</u>	5
	6	9	35	130	35		3	2	6
	8	12	50	180		Crown Fire? Pocket card Briefing?	4	1	8
	10	16	60	240	્ર	Recent Crown fire?	5	1	10
	12	20	80	300	<u> </u>	Critically low RH?	6	1.5	12
	16	30	100	440	Conditions	Torching w/backing or flanking fire?	8	2	16
	20	40	140	600	Ö	Fire climbing up	10	3	20
	24	50	180	700		ladder fuels?	13	3	24
	30	60	220	1000	sti	ROS-ratios of 60x	17	4	30
e	40	80	300	1300	ie	& greater (shaded	25	6	40
•	50	110	400	1800	Unrealistic	combinations here) have been	30	8	50
	60	140	500	2200	ĵ	associated with fire	40	10	60
	80	200	700	3100		fatalities.	60	16	80

Wind Adjustment (Table 3 can be used to aid adjustments from Fig A & Fig B below)

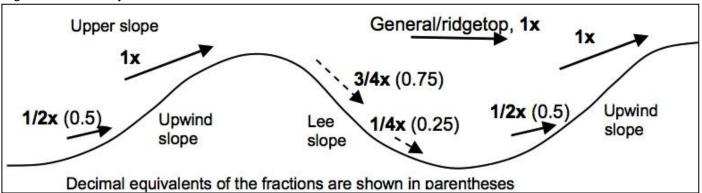

Table 5.3.5-1 Wind adjustment factors

Table 3.		Ref	eren	ce V	Vinds	spee	d fro	m cı	ırren	t loc	atio	n or f	forec	ast	
Adjustment ↓	2	4	6	8	10	12	16	20	24	28	32	36	40	50	60
1⇒½ or ½⇒¼	1	2	3	4	5	6	8	10	12	14	16	18	20	25	30
½ ⇒1 or ¼⇒½	4	8	12	16	20	24	32	40	48	56	64				
1 ⇒ ¾	2	3	4	6	8	9	12	15	18	21	24	27	30	38	45
³⁄₄ ⇒ 1	3	5	8	11	13	16	21	27	32	37	43	48	53	67	80
$\frac{3}{4} \Rightarrow \frac{1}{4}$	1	2	2	3	3	4	5	7	8	9	11	12	13	17	20
1/4 ⇒ 3/4	6	12	18	24	30	36	48	60							
1 ⇒ 1/4	<1	1	2	2	3	3	4	5	6	7	8	9	10	12	15
¹⁄₄ ⇒ 1	8	16	24	32	40	48									
1/2 ⇒ 3/4	3	6	9	12	15	18	24	30							
$\frac{3}{4} \Rightarrow \frac{1}{2}$	1	3	4	5	7	8	12	14	16						

Fig A Terrain Influence (Wind adjustment as it blows across hills (100s of feet of relief or less)

- -Use this adjustment only if your measurement or forecast location is different than the fire location.
- -Not for dense air/terrain flows (Night downslope, thunderstorm outflows, sea breeze & foehn winds)
- -On windward side, wind speed is typically greater on upper slopes than on lower ones.
- -On lee side, expect turbulence & variability. Use dashed adjustments only on hills w/ slopes <30%

Figure 5.3.5-1 Wind adjustments for terrain influence

Sheltering and Flame Height Adjustment. Use only if your measurement or forecast location is different than the fire location.

Fig B: Tree

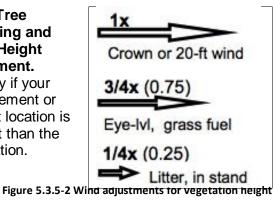


Fig C: Slope equivalent **Effective** Windspeed. Use only if your measurement or forecast location is different than the fire location.

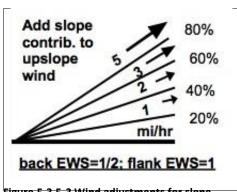


Figure 5.3.5-3 Wind adjustments for slope

5.4 Surface Fire Behavior Lookup Tables, Nomographs, & Nomograms

5.4.1 Surface Fire Behavior Worksheet (with Size & Shape)

Incident/Project: Observer/Analyst: Date:

	Time a	nd Place	Notes
1	Projection Point Identifier		
2	Projection Month/Day		
3	Projection Hour of the Day		
4	Burn Period/Duration, hr or min		
	Section 2.	Fuel/Terrain	
5	Surface Fuel Model		
6	Canopy Cover, %		
7	Aspect (N, E,S,W)		
8	Slope, %		
	Section 3. Dead Fuel Moisture – a	dd 1-2 % each for 10-hr and 1	00-hr
9	Cloud Cover, %		
10	Dry Bulb Temperature, ° F		
11	Wet Bulb Temperature, ° F		
12	Relative Humidity, %		
13	Reference Fuel Moisture, %		
14	(S)haded or (U)nshaded		
15	Elevation Difference (B, L, A)		
16	Fuel Moisture Correction, %		
17	1-hr Moisture Content (L13 + L15)		
	Section 3. Liv	e Fuel Moisture	
18	Herbaceous Moisture Content, %		
19	Woody Moisture Content, %		
		eed and Wind Direction	
20	Wind Direction		
21	Surface (20ft) Windspeed, mph		
22	(S)heltered or (U)nsheltered		
23	Wind Adjustment Factor		
24	Midflame Windspeed, mph		
25	Effective Windspeed, mph		
		Fire Behavior	
26	Probability of Ignition		(1) (2) (3)
27	Spread Direction		(H)ead, (B)ack, (F)lank
28	Direction of Max Spread		21 (226.) (
29	Head Fire Rate of Spread (HFROS)		Chains (66ft)/hour
30	Head Fire Flame Length (HFFL)		Feet
31	Fraction of HFROS		
32	Fraction of HFFL		0) / (500) //
33	ROS in Spread Direction		Chains (66ft)/hour
34	FL in Spread Direction	Cine and Chans	Feet
25	T	Size and Shape	Notes
35	Spread Distance, chains (66ft)		
36	Fire Size, acres		
37	Fire Perimeter, chains (66ft)		

5.4.2 Effective Windspeed (EWS)

Table 5.4.2-1 EWS in models 1,2,9

Fuel Models 1, 2, 9; Effective Windspeed (EWS), in mph

DATIA/C					Slope St	eepness				
MFWS	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
0	1	1	2	3	3	4	5	5	6	7
2	2	2	3	3	4	4	5	6	6	7
4	4	4	5	5	5	6	6	7	7	8
6	6	6	6	7	7	7	8	8	9	9
8	8	8	8	8	9	9	9	9	10	11
10	10	10	10	10	11	11	11	12	12	13
12	12	12	12	12	13	13	13	14	14	14
14	14	14	14	14	15	15	15	15	16	16
16	16	16	16	16	16	17	17	17	18	18
18	18	18	18	18	18	19	19	19	19	20
20	20	20	20	20	20	21	21	21	21	22

Table 5.4.2-2 EWS in models 3, 4, 5, 6, 7, 8, 10; Effective Windspeed (EWS), in mph

MFWS					Slope St	eepness				
IVIEVVS	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
0	0	1	1	2	3	3	4	5	6	7
2	2	2	3	3	4	5	5	6	7	8
4	4	4	5	5	5	6	7	8	8	9
6	6	6	7	7	7	8	9	9	10	11
8	8	8	8	9	9	10	10	11	12	12
10	10	10	10	11	11	11	12	13	13	14
12	12	12	12	13	13	13	14	15	15	16
14	14	14	14	15	15	15	16	16	17	18
16	16	16	16	17	17	17	18	18	19	20
18	18	18	18	19	19	19	20	20	21	21
20	20	20	20	21	21	21	21	22	23	23

Table 5.4.2-3 EWS in models 11, 12, 13; Effective Windspeed (EWS), in mph

models 11-13				,,,		· · · · · · · · · · · · · · · · · ·		,,p.		
DAEVA/C					Slope St	eepness				
MFWS	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
0	0	1	1	2	3	4	5	6	7	9
2	2	2	3	3	4	5	6	7	9	10
4	4	4	5	5	6	7	8	9	10	12
6	6	6	7	7	8	9	10	11	12	14
8	8	8	9	9	10	11	12	13	14	15
10	10	10	11	11	12	13	14	15	16	17
12	12	12	13	13	14	15	16	17	18	19
14	14	14	15	15	16	17	18	19	20	21
16	16	16	17	17	18	19	19	21	22	23
18	18	18	19	19	20	20	21	22	24	25
20	20	20	21	21	22	22	23	24	25	26

5.4.3 Surface Fire Behavior Lookup Tables for Original 13 Fuel Models

5.4.3.1 FUEL MODEL 1

	READ h/hr	Table 5		ROS in F					•	I(EWS) mes unsh	•	ind adius	stment (0	.4)
	t/FCST	NWNS-0	%	н	5	10	15	20	25	30	35	40	45	50
	EWS		Back -	Flank -	2	4	6	8	10	12	14	16	18	20
	1	8	9	14	32	111	247	442	697	1014	1145	1145	1145	1145
	2	6	7	11	26	90	201	360	568	666	666	666	666	666
	3	5	6	9	22	77	172	307	446	446	446	446	446	446
%,	4	5	6	8	20	69	154	275	345	345	345	345	345	345
ıre	5	4	5	8	19	64	143	255	297	297	297	297	297	297
Moisture,	6	4	5	7	18	61	135	242	270	270	270	270	270	270
Лоі	7	4	5	7	17	57	127	228	242	242	242	242	242	242
r	8	4	4	6	15	52	117	199	199	199	199	199	199	199
1-hr	9	3	4	6	13	45	101	136	136	136	136	136	136	136
	10	2	3	4	10	35	65	65	65	65	65	65	65	65
	11	1	2	2	6	13	13	13	13	13	13	13	13	13
	12	0	0	0	0	0	0	0	0	0	0	0	0	0

	AME eet	Table 5.4							-	(EWS) mes unsh	-	ind adjus	stment (0	.4)
	t/FCST	IS-0	- 1/2	ι-1	5	10	15	20	25	30	35	40	45	50
E	WS	NWNS-0	Back	Flank	2	4	6	8	10	12	14	16	18	20
	1	2	2	2	3	6	9	11	14	17	18	18	18	18
	2	1	2	2	3	5	7	10	12	13	13	13	13	13
	3	1	1	2	3	4	6	8	10	10	10	10	10	10
%	4	1	1	2	2	4	6	8	9	9	9	9	9	9
ıre	5	1	1	2	2	4	6	7	8	8	8	8	8	8
Moisture,	6	1	1	1	2	4	5	7	7	7	7	7	7	7
loi	7	1	1	1	2	4	5	7	7	7	7	7	7	7
	8	1	1	1	2	3	5	6	6	6	6	6	6	6
1-hr	9	1	1	1	2	3	4	5	5	5	5	5	5	5
\ .	10	1	1	1	1	2	3	3	3	3	3	3	3	3
	11	0	1	1	1	1	1	1	1	1	1	1	1	1
	12	0	0	0	0	0	0	0	0	0	0	0	0	0

5.4.3.2 FUEL MODEL 2

SPR	EAD	Table 5.4	.3.2-1 R	OS in FM	12	Effec	tive \	Vinds	peed	(EWS),	mph			
Ch	/hr	:	*Use 2	Oft/FCS	T wind	only if	EWS = N	/IFWS ar	nd assur	nes unshe	ltered w	ind adjus	tment (0.	3)
*FCS	T/20ft	NWNS-0	(- 1/2	k-1	7	13	20	27	33	40	47	53	60	67
EV	NS	Ž	Back	Flank	2	4	6	8	10	12	14	16	18	20
	1	3-4	4-5	6-7	12- 14	36- 41	71- 82	118- 136	176- 202	245- 281	324- 371	412- 473	511- 586	619- 710
80%)	3	3	3-4	5	10- 11	28- 32	56- 64	93- 106	138- 158	192- 220	253- 290	323- 370	400- 458	484- 555
,%; 120% -	5	2-3	3	4-5	8-10	24- 27	48- 55	79- 91	118- 135	164- 188	217- 248	277- 316	343- 392	415- 475
ure, % ure 1	7	2	3	4	8-9	22- 25	44- 50	73- 83	108- 123	150- 171	198- 226	253- 288	313- 357	379- 432
Moisture, moisture	9	2	2-3	3-4	7-8	20- 23	40- 46	66- 76	99- 113	138- 157	182- 207	232- 264	287- 327	348- 396
	11	2	2	3	6-7	17- 20	34- 39	57- 65	85- 97	118- 134	155- 177	198- 226	245- 280	297- 339
1-hr (Herbaceous	13	1	1-2	2	4-5	12- 14	24- 27	40- 45	60- 68	83- 94	110- 124	140- 159	173- 196	210- 238
(He	15	0	0-1	0-1	0-2	0-4	0-9	0-13	0-13	0-13	0-13	0-13	0-13	0-13
	17	0	0	0	0	0	0	0	0	0	0	0	0	0

FLA Ch	ME /hr	Table 5.4						Winds MFWS a			•	ind adjus	tment (0.	3)
*20ft	/FCST	IS-0	1/2	k - 1	7	13	20	27	33	40	47	53	60	67
EV	VS	NWNS-0	Back	Flank	2	4	6	8	10	12	14	16	18	20
<u> </u>	1	2-3	3	3-3	5	7-8	10-11	13-14	15-16	18-19	20-22	23-24	25-27	27-29
80%	(%08		2	3-3	4	6	8-9	10-11	12-13	14-16	16-18	18-20	20-22	22-24
, %; 20% -	5	2	2	2-3	3-4	5-6	7-8	9-10	11-12	13-14	15-16	16-18	18-19	20-21
Ф <u>Г</u>	7	2	2	2	3	5	7	9	10-11	12-13	14-15	15-16	17-18	18-20
1-hr Moisture, eous moist. 12	9	2	2	2	3	5	6-7	8-9	10	11-12	13-14	14-16	16-17	17-19
n Me	11	1	2	2	3	4	6	7-8	9	10-11	11-12	13-14	14-15	15-17
1-t aceo	13	1	1	1	2	3	4-5	5-6	6-7	7-8	8-9	9-10	10-11	11-12
1-hr Moistur (Herbaceous moist.	15	0	<1	<1	0-1	0-1	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2
–	17	0	0	0	0	0	0	0	0	0	0	0	0	0

5.4.3.3 FUEL MODEL 3

SPR	EAD	Table 5.4	4.3.3-1 F	ROS in FN	13	Effec	tive V	Vinds	peed	(EWS),	mph			
Ch	/hr	*Use 2	Oft/FC	ST win	d only	if EWS =	MFWS	and ass	umes un	sheltere	d wind ad	justment	(0.4)	
*20ft	/FCST	0/SNMN	(- 1/2	K -1	5	10	15	20	25	30	35	40	45	50
EV	NS	Š	Back	Flank	2	4	6	8	10	12	14	16	18	20
	1	8	18	32	68	157	261	377	502	636	776	923	1076	1234
	3	6	14	25	52	121	201	290	387	490	598	712	829	951
	5	5	11	20	42	97	162	234	312	395	482	574	669	767
%	7	4	9	17	36	82	137	198	264	335	409	486	566	650
Moisture,	9	4	8	15	32	73	122	176	234	296	362	430	501	575
stı	11	3	8	14	29	67	111	161	214	271	331	393	458	526
Moi	13	3	7	13	27	62	103	149	198	251	306	364	425	487
ן <u>י</u>	15	3	6	12	25	57	95	137	182	231	282	335	391	448
1-hr	17	3	6	10	22	51	85	122	163	207	252	300	350	401
	19	2	5	9	19	43	71	103	137	174	212	253	294	338
	21	2	4	7	14	32	53	77	103	130	159	189	194	194
	23	1	2	4	8	18	30	43	54	54	54	54	54	54

	ME eet	Table 5.4							-	(EWS)	, mph	iustment	(0.4)	
	/FCST		1/2	_	5	10	15	20	25	30	35	40	45	50
EV	NS	NWNS/0	Back	Flank	2	4	6	8	10	12	14	16	18	20
	1	5	7	9	12	18	23	27	31	35	38	41	44	47
	3	4	5	7	10	15	19	22	25	28	31	34	36	38
	5	3	5	6	9	13	16	19	22	24	26	28	31	33
%	7	3	4	5	8	11	14	17	19	21	23	25	27	29
le,	9	3	4	5	7	10	13	15	18	20	21	23	25	27
Moisture,	11	2	4	5	7	10	12	15	17	19	20	22	24	25
Лоі	13	2	3	5	6	9	12	14	16	18	19	21	23	24
ı ı	15	2	3	4	6	9	11	13	15	17	19	20	22	23
1-hr	17	2	3	4	6	8	10	12	14	16	17	19	20	21
	19	2	3	4	5	7	9	11	12	14	15	16	17	19
	21	1	2	3	4	6	7	8	10	11	12	13	13	13
	23	1	1	2	2	3	4	5	6	6	6	6	6	6

5.4.3.4 FUEL MODEL 4

SPRE				1 ROS in			fective				•	/0	->	
Ch/ł	ır	*Use	20ft/	FCST w	ind only	y if EWS	S = MFWS	and assu	imes unsh	neltered v	vind adjus	stment (0	.5)	
*20ft/F	CST	NWNS-0	k - ½	ık - 1	4	8	12	16	20	24	28	32	36	40
EWS	S	N N	Back	Flank	2	4	6	8	10	12	14	16	18	20
	1	5- 6	8- 11	13- 18	27- 37	65- 88	111- 151	165- 224	225- 306	290- 394	359- 489	433- 589	511- 695	593- 807
(%08	3	4- 6	7-9	11- 16	24- 32	56- 76	97-132	144- 195	196- 266	253- 343	313- 425	378- 513	446- 605	517- 702
1	5	4- 5	6-8	10- 14	21- 29	51- 69	88-118	130- 176	178- 239	229- 309	284- 383	343- 462	404- 545	469- 632
ıre, %; 120%	7	4- 5	6-8	10- 13	20- 27	48- 64	83-110	122- 163	167- 222	215- 286	267- 355	322- 429	380- 506	440- 587
	9	3- 4	6-7	9-12	19- 25	46- 61	79-104	118- 155	160- 211	206- 271	256- 337	309- 406	365- 479	423- 556
1-hr Moistu (Woody moisture	11	3- 4	5-7	9-12	19- 24	44- 58	76-100	113- 148	154- 201	199- 259	247- 322	298- 388	351- 458	408- 531
1-hr dy mo	13	3- 4	5-7	8-11	17- 23	41- 55	71-95	105- 140	143- 191	184- 246	229- 306	276- 369	325- 435	377- 504
V000	15	2- 4	4-6	6-10	13- 21	30- 50	52-87	77-129	105- 175	135- 226	167- 281	202- 338	238- 399	276- 463
2	17	1- 3	2-5	3-8	6-16	14- 38	25-65	37-96	50-130	65-168	80-209	97-252	114- 297	133- 344
	19	1	1	2	3-4	8-10	14-17	20-25	27-34	35-44	44-55	53-66	62-78	72-90

FLAN	ΛE			-2 FL in FN		Effecti		•	•		•			
feet	<u> </u>	*Use	e 20ft,	/FCST w	ind only	if EWS =	MFWS	and assi	umes un	sheltere	d wind	adjustm	ent (0.5)	
20ft/F	CST	NWNS-0	7-1	k - 1	4	8	12	16	20	24	28	32	36	40
EW	S	Ž	Back	Flank	2	4	6	8	10	12	14	16	18	20
	1	6-7	8-9	10-11	13-16	20-24	26-30	31-36	36-42	40-47	44-52	48-57	52-61	56-66
80%)	3	5-6	7-8	9-10	12-14	18-21	23-27	27-32	32-37	36-42	39-46	43-50	46-54	49-58
1	5	5-6	6-7	8-9	11-13	16-19	21-25	25-30	29-34	33-38	36-42	39-46	43-50	46-53
ıre, %; 120%	7	5	6-7	8-9	10-12	16-18	20-23	24-28	28-32	31-36	34-40	37-43	40-47	43-50
stur re 1	9	5	6-7	7-8	10-12	15-17	19-22	23-27	27-31	30-35	33-38	36-42	39-45	42-48
1-hr Moisture, (Woody moisture 120	11	4-5	6-6	7-8	10-11	15-17	19-22	23-26	26-30	29-34	32-37	35-40	38-44	41-47
1-hr l ly mo	13	4-5	5-6	7-8	9-11	14-16	18-21	21-25	24-29	28-32	30-36	33-39	36-42	38-45
1 ody	15	3-5	4-6	5-7	7-10	10-15	13-19	16-23	18-27	21-30	23-33	25-36	27-39	29-42
≥	17	2-3	2-3	3-6	4-8	5-12	7-15	8-18	9-21	11-23	12-25	13-28	14-30	15-32
	19	1	1	2	2	3	4	5	5-6	6-7	7	7-8	8-9	9

5.4.3.5 FUEL MODEL 5

SPRE/		Table 5							•	•	/S), mpl	h ndjustment	(0.4)	
*20ft/F		0-SN	7-1%	k - 1	5	10	15	20	25	30	35	40	45	50
EWS	;	NWNS-0	Back	Flank	2	4	6	8	10	12	14	16	18	20
	1	1–2	2-3	4-6	8-12	20-28	34-48	50-70	67-95	86-122	107-151	128-181	151-214	175-247
%	3	1-2	2-3	3-5	7-11	17-25	28-43	42-63	57-86	73-110	90-136	109-164	128-193	148-223
%; 120%	5	1	2-3	3-5	5-10	13-23	22-40	32-59	44-79	56-102	70-126	84-152	98-178	114-206
	7	<1	1-2	1-4	3-9	6-22	10-37	15-54	20-74	22-95	22-117	22-141	22-165	22-191
Moisture, moisture	9	<1	1-2	1-4	2-8	6-18	10-32	14-47	19-63	20-81	20-100	20-120	20-142	20-164
	11	<1	1	1-2	2-4	5-9	9-16	14-23	19-32	19-41	19-46	19-46	19-46	19-46
	13	<1	1	1	2-3	5-7	9-12	13-17	17-22	17-22	17-22	17-22	17-22	17-22
1-hr (Woody	15	<1	<1	1	2-3	5-6	8-10	11-15	12-16	12-16	12-16	12-16	12-16	12-16
	17	<1	<1	<1	1-2	3-5	6-8	7-9	7-9	7-9	7-9	7-9	7-9	7-9
	19	<1	<1	<1	1	1-2	1-2	1-2	1-2	1-2	1-2	1-2	1-2	1-2

FLAN feet				-2 FL in F /FCST v					•	•	/S), mp	h d adjustm	ent (0.4)	
*20ft/F		NWNS-0	(- 1/2	k - 1	5	10	15	20	25	30	35	40	45	50
EWS	;	N	Back	Flank	2	4	6	8	10	12	14	16	18	20
	1	2	2-3	3	4-5	6-7	8-9	9-11	11-13	12-14	13-16	14-17	15-19	17-20
80%)	3	1-2	2	3	4	5-7	7-9	8-10	9-12	10-13	11-14	12-16	13-17	14-18
1	5	1-2	2	2-3	3-4	4-6	5-8	6-10	7-11	8-12	9-14	10-15	10-16	11-17
	7	1-2	1-2	1-3	1-4	2-6	3-7	3-9	4-10	4-12	4-13	4-14	4-15	4-16
	9	1	1-2	1-2	1-3	2-5	3-7	3-8	3-9	3-10	3-11	3-12	3-13	3-14
hr Moistu moisture	11	1	1	1	1-2	2-3	2-4	3-4	3-5	3-5	3-6	3-6	3-6	3-6
ž Ĕ	13	1	1	1	1	2	2-3	3	3-4	3-4	3-4	3-4	3-4	3-4
1- (Woody	15	0-1	1	1	1	2	2	2-3	3	3	3	3	3	3
No.	17	<1	0-1	0-1	1	1	2	2	2	2	2	2	2	2
٥	19	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1

5.4.3.6 FUEL MODEL 6

SPREAD	Table 5.4.3.	.6-1 ROS in FM	16	Effec	tive \	Vinds	peed	(EWS),	mph			
Ch/hr	*Use 20f	t/FCST wind	d only	if EWS =	MFWS	and ass	umes ur	sheltered	d wind ad	justment	(0.4)	
*20ft/FCST	NW NS/ Dac	k - Ha nk -	5	10	15	20	25	30	35	40	45	50

EV	NS				2	4	6	8	10	12	14	16	18	20
	1	3	5	9	19	42	71	103	138	175	215	257	300	345
	3	2	4	7	15	34	56	82	110	139	171	204	239	274
	5	2	4	6	12	28	47	68	91	115	141	168	197	226
%	7	2	3	5	10	24	40	58	78	99	121	145	169	181
	9	1	3	5	9	21	36	52	69	88	108	129	150	150
1-hr Moisture,	11	1	2	4	8	19	33	47	63	81	99	118	132	132
ois	13	1	2	4	8	18	30	44	59	75	92	109	120	120
Σ	15	1	2	4	7	17	28	41	55	70	85	102	109	109
<u>ا</u>	17	1	2	3	7	15	26	38	50	64	78	93	96	96
	19	1	2	3	6	14	23	33	45	57	70	78	78	78
	21	1	1	3	5	12	19	28	38	48	55	55	55	55
	23	1	1	2	4	9	15	21	29	31	31	31	31	31
	25	<1	1	1	2	5	9	10	10	10	10	10	10	10

	AME eet	Table 5.4 *Use 2							•	(EWS),	•	ljustment	(0.4)	
*20ft	:/FCST	0/51	7- 72	k - 1	5	10	15	20	25	30	35	40	45	50
E۱	WS	NWNS/0	Back	Flank	2	4	6	8	10	12	14	16	18	20
	1	5	8	10	12	14	15	17	18	19	21	5	8	10
	3	5	7	8	10	11	13	14	15	16	17	5	7	8
	5	4	6	7	9	10	11	12	13	14	15	4	6	7
%	7	4	5	7	8	9	10	11	12	13	13	4	5	7
	9	3	5	6	7	8	9	10	11	12	12	3	5	6
tur	11	3	5	6	7	8	9	10	10	11	11	3	5	6
Moisture,	13	3	4	6	7	7	8	9	10	10	10	3	4	6
Σ	15	3	4	5	6	7	8	9	10	10	10	3	4	5
1-hr	17	3	4	5	6	7	8	8	9	9	9	3	4	5
7	19	3	4	5	5	6	7	8	8	8	8	3	4	5
	21	2	3	4	5	5	6	6	6	6	6	2	3	4
	23	2	3	3	4	4	4	4	4	4	4	2	3	3
	25	1	2	2	2	2	2	2	2	2	2	1	2	2

5.4.3.7 FUEL MODEL 7

SPREAD	Table	5.4.3.7	7-1 ROS	in FM7	Ef	fectiv	e Wir	ndspe	ed(EW	S), mpl	า		
Ch/hr	*Us	e 20 ft	t/FCST	wind or	nly if EW	S = MFV	VS and a	ssumes	unshelte	red wind a	djustment	(0.4)	
*20ft/FCST	NS-	& -	۰ ۱ ۵ - hr	5	10	15	20	25	30	35	40	45	50

EW	S				2	4	6	8	10	12	14	16	18	20
	3	1-2	3	5-6	10-	23-	38-	56-	74-	94-	116-	138-	161-	185-
	3	1-2	3	5-0	12	28	47	68	91	115	141	168	197	226
<u> </u>	6	1	2-3	4-5	0.10	20-	33-	48-	64-	91.00	100-	119-	139-	160-
(%08	О	1	2-3	4-5	9-10	24	40	58	78	81-99	121	144	169	194
	9	1	2-3	4-5	8-9	17-	29-	42-	57-	72-87	88-106	105-	123-	141-
%;	9	1	2-3	4-5	0-3	21	35	51	68	/2-0/	99-100	127	148	170
	12	1	2	3-4	7-8	16-	26-	38-	51-	65-78	80-96	95-114	112-	119-
_	12	1	2	3-4	7-0	19	32	46	62	05-76	80-30	33-114	134	147
hr Moistu moisture	15	1	2	3-4	6-8	15-	25-	36-	48-	60-72	74-88	88-105	103-	105-
loi	13	1		3-4	0-8	17	29	42	57	00-72	74-00	99-103	123	129
≥ .	18	1	2	3	6-7	14-	23-	33-	45-	57-68	70-83	83-99	96-115	96-117
₹ E	10	_	2	3	0-7	16	27	40	53	37-08	70-65	03-33	30-113	90-117
d →	21	1	2	3	6-7	13-	22-	32-	42-	54-64	66-78	79-93	89-108	89-108
1. (Woody	21			3	0-7	15	26	37	50	34-04	00-78	79-93	83-108	83-108
Š	24	1	2	3	5-6	12-	21-	30-	40-	51-60	63-74	75-88	82-100	82-100
	24	_	2	3	3-0	15	24	35	47	21-00	03-74	75-00	82-100	82-100
	27	1	1-2	2-3	5-6	12-	19-	28-	38-	48-56	59-69	70-83	74-91	74-91
	21	1	1-2	2-3	3-0	14	23	33	44	40-30	33-03	70-65	74-31	74-31

FLAN				2 FL in					•	•	S), mբ			. (0.0)
feet		*Use	20ft/	FCST v	wind o	nly if	EWS =	MFW	S and as	sumes u	nsheltere	ed wind a	adjustme	nt (0.4)
*20ft/F	CST	NWNS-0	1/2	k - 1	5	10	15	20	25	30	35	40	45	50
EWS	6	N	Back	Flank	2	4	6	8	10	12	14	16	18	20
(9	3	2-2	2	3	4-4	6-6	7-8	8-9	10-11	11-12	12-13	13-14	14-15	15-16
80%)	6	1-2	2	2-3	3-4	5-6	6-7	8-8	9-10	10-11	11-12	11-13	12-14	13-14
%;	9	1-1	2	2-3	3-3	5-5	6-6	7-8	8-9	9-10	10-11	10-12	11-12	12-13
Moisture, %; oisture 120%	12	1-1	2	2	3-3	4-5	5-6	6-7	7-8	8-9	9-10	10-11	10-11	11-12
oist	15	1-1	2	2	3-3	4-4	5-6	6-7	7-8	8-9	9-9	9-10	10-11	10-11
r M nois	18	1-1	2	2	3-3	4-4	5-5	6-6	7-7	7-8	8-9	9-10	9-10	9-11
1-hr dy mc	21	1-1	1-2	2	3-3	4-4	5-5	6-6	6-7	7-8	8-9	9-9	9-10	9-10
1-hr Moistu (Woody moisture	24	1-1	1-2	2	2-3	4-4	5-5	5-6	6-7	7-8	8-8	8-9	9-10	9-10
2	27	1-1	1	2	2-3	3-4	4-5	5-6	6-7	7-7	7-8	8-9	8-9	8-9

5.4.3.8 FUEL MODEL 8

	EAD /hr	Table 5.4							•	(EWS), imes shel	•	nd adjusti	ment (0.2)
*20ft	:/FCST	0/51	%	k - 1	10	20	30	40	50	60	70	80	90	100
E۱	WS	NWNS/0	Back	Flank	2	4	6	8	10	12	14	16	18	20
	1	0	1	1	1	3	4	6	9	11	13	13	13	13
	3	0	<1	1	1	2	3	5	7	8	8	8	8	8
	5	0	<1	<1	1	2	3	4	6	6	6	6	6	6
%	7	0	<1	<1	1	1	2	4	4	4	4	4	4	4
re,	9	0	0	<1	1	1	2	3	3	3	3	3	3	3
1-hr Moisture,	11	0	0	<1	1	1	2	3	3	3	3	3	3	3
Θ	13	0	0	<1	0	1	2	3	3	3	3	3	3	3
į	15	0	0	<1	0	1	2	2	2	2	2	2	2	2
+	17	0	0	0	0	1	2	2	2	2	2	2	2	2
	19	0	0	0	0	1	1	2	2	2	2	2	2	2
	21	0	0	0	0	1	1	2	2	2	2	2	2	2
	23	0	0	0	0	1	1	1	1	1	1	1	1	1

	AME eet	Table 5.4			CST win				•	(EWS), imes shel	mph tered wir	nd adjusti	ment (0.2	2)
*20ft	:/FCST	0/51	- 1/2	ι-1	10	20	30	40	50	60	70	80	90	100
EV	WS	NWNS/0	Back	Flank	2	4	6	8	10	12	14	16	18	20
	1	1	1	1	1	1	2	2	2	3	3	3	3	3
	3	1	1	1	1	1	2	2	2	2	2	2	2	2
	5	0	1	1	1	1	1	2	2	2	2	2	2	2
%	7	0	<1	1	1	1	1	1	2	2	2	2	2	2
ıre,	9	0	<1	1	1	1	1	1	1	1	1	1	1	1
1-hr Moisture,	11	0	<1	<1	1	1	1	1	1	1	1	1	1	1
Š	13	0	<1	<1	1	1	1	1	1	1	1	1	1	1
į	15	0	<1	<1	1	1	1	1	1	1	1	1	1	1
4	17	0	<1	<1	0	1	1	1	1	1	1	1	1	1
	19	0	<1	<1	0	1	1	1	1	1	1	1	1	1
	21	0	<1	<1	0	1	1	1	1	1	1	1	1	1
	23	0	<1	<1	0	1	1	1	1	1	1	1	1	1

5.4.3.9 FUEL MODEL 9

_	EAD	Table 5.4							•	(EWS),	mph rd wind a	ndiustmer	nt (0.3)	
	/hr T/20ft		×-	4	7	13	20	27	33	40	47	53	60	67
EV	NS	NWNS-0	Back	Flank	2	4	6	8	10	12	14	16	18	20
	1	1	2	2	4	11	20	33	47	64	83	104	127	152
	3	1	1	2	3	8	16	25	36	49	64	80	98	118
	5	1	1	2	3	7	13	20	29	40	52	65	79	95
%	7	1	1	1	2	6	11	17	25	34	44	55	67	80
re,	9	1	1	1	2	5	10	15	22	30	39	49	60	71
1-hr Moisture,	11	1	1	1	2	5	9	14	20	27	36	45	54	65
Š	13	1	1	1	2	4	8	13	19	25	33	41	50	60
į	15	1	1	1	2	4	7	12	17	23	30	38	46	56
+	17	0	1	1	1	4	7	11	15	21	27	34	42	48
	19	0	1	1	1	3	6	9	13	18	23	29	33	33
	21	0	<1	1	1	2	4	7	10	13	17	17	17	17
	23	0	<1	<1	1	1	2	4	4	4	4	4	4	4

	ME eet	Table 5.4								EWS),	mph rd wind a	djustmer	nt (0.3)	
*FCS	T/20ft	O-SN	%	k - 1	7	13	20	27	33	40	47	53	60	67
E۱	NS	NWNS-0	Back	Flank	2	4	6	8	10	12	14	16	18	20
	1	2	2	2	3	4	5	6	8	9	10	11	12	13
	3	1	1	2	2	3	4	5	6	7	8	9	10	11
	5	1	1	1	2	3	4	4	5	6	7	8	8	9
%	7	1	1	1	2	2	3	4	5	5	6	7	7	8
ıre,	9	1	1	1	1	2	3	4	4	5	6	6	7	7
Moisture,	11	1	1	1	1	2	3	3	4	5	5	6	6	7
Θ	13	1	1	1	1	2	3	3	4	4	5	6	6	7
1-hr	15	1	1	1	1	2	3	3	4	4	5	5	6	6
4	17	1	1	1	1	2	2	3	3	4	4	5	5	6
	19	1	1	1	1	2	2	3	3	3	4	4	5	5
	21	0	1	1	1	1	2	2	2	3	3	3	3	3
	23	0	<1	<1	0	1	1	1	1	1	1	1	1	1

5.4.3.10 FUEL MODEL 10

SPRE/ Ch/h		Table			in FM10	Eff			•	(EWS), nes prtly s	•	vind adju	stment (0).3)
*20ft/F	CST	NWNS-0	2 - 7	k - 1	7	13	20	27	33	40	47	53	60	67
EWS		N	Back	Flank	2	4	6	8	10	12	14	16	18	20
	1	1	1-2	2	3-4	8-10	13-17	19-25	25-33	33-43	41-53	49-64	58-76	67-88
80%)	3	1	2	2	3-4	7-9	11-15	16-22	22-29	29-38	35-47	43-56	50-66	59-77
1	5	1	1	1-2	3-3	6-8	10-13	15-19	20-26	26-34	32-42	38-50	45-59	52-69
re, %; 120%	7	1	1	1-2	2-3	5-7	9-12	13-18	18-24	24-31	29-38	35-46	42-54	48-63
	9	1	1	1-2	2-3	5-7	9-11	13-16	17-22	22-29	27-36	33-43	39-51	45-59
oist	11	1	1	1-2	2-3	5-6	8-11	12-16	16-21	21-27	26-34	32-41	37-48	43-56
M Sio	13	1	1	1-2	2-3	5-6	8-10	12-15	16-20	20-26	25-32	30-39	36-46	41-53
1-hr y m	15	1	1	1	2-3	4-6	8-10	11-14	15-19	19-25	24-31	29-37	34-43	40-50
1-hr Moistu (Woody moisture	17	1	1	1	2	4-5	7-9	11-13	14-18	18-23	23-29	28-34	33-41	38-47
×	19	<1	1	1	2	4-5	7-8	10-12	13-16	17-21	21-26	25-32	30-37	35-43
	21	<1	1	1	1-2	3-4	5-7	8-11	11-14	14-19	17-23	21-28	25-33	29-38

FLAN feet				2 FL in F					•	ed(EW	• •		ljustment	(0.3)
*20ft/F	CST	1S-0	%	k - 1	7	13	20	27	33	40	47	53	60	67
EWS	5	NWNS-0	Back	Flank	2	4	6	8	10	12	14	16	18	20
	1	2	2-3	3	4	5-6	7-8	8-9	9-11	11-12	12-13	13-15	14-16	15-17
(%08	3	2	2	3	3-4	5-6	6-7	7-8	8-10	9-11	10-12	11-13	12-14	13-15
1	5	2	2	2-3	3-4	4-5	6	7-8	8-9	9-10	9-11	10-12	11-13	12-14
re, %; 120%	7	2	2	2-3	3	4-5	5-6	6-7	7-8	8-9	9-10	10-11	10-12	11-13
	9	1-2	2	2	3	4	5-6	6-7	7-8	8-9	8-10	9-11	10-11	11-12
oist	11	1-2	2	2	3	4	5-6	6-7	7-8	7-8	8-9	9-10	10-11	10-12
M Oist	13	1-2	2	2	3	4	5	6	6-7	7-8	8-9	9-10	9-11	10-11
1-hr ly mo	15	1-2	2	2	2-3	4	5	5-6	6-7	7-8	8-9	8-10	9-10	10-11
1 od)	17	1	2	2	2-3	3-4	4-5	5-6	6-7	7-8	7-8	8-9	9-10	9-10
1-hr Moistu (Woody moisture	19	1	1-2	2	2	3-4	4-5	5	6	6-7	7-8	8	8-9	9-10
	21	1	1	1-2	2	3	3-4	4-5	5-6	5-6	6-7	6-8	7-8	7-9

5.4.3.11 FUEL MODEL 11

	EAD /hr	Table 5.4							•	(EWS), nes unsh	mph eltered w	ind adjus	tment (0.	4)
*20ft	/FCST	0/SNMN	%-1	k - 1	5	10	15	20	25	30	35	40	45	50
EV	NS	MN	Back	Flank	2	4	6	8	10	12	14	16	18	20
	1	1	2	2	4	8	12	16	20	25	29	34	39	43
%	3	1	1	2	3	6	9	13	16	20	23	27	31	35
	5	1	1	2	3	5	8	11	14	17	20	23	26	30
1-hr Moisture,	7	1	1	1	2	5	7	10	12	15	18	21	24	27
Θ	9	<1	1	1	2	4	7	9	11	14	17	19	22	25
- -	11	<1	1	1	2	4	6	8	10	12	15	17	19	22
~	13	<1	1	1	2	3	5	6	8	10	12	14	16	16
	15	<1	<1	1	1	2	3	4	5	6	7	7	7	7

	AME eet	Table 5.4							•	(EWS) nes unsh	, mph eltered w	ind adjus	tment (0.	4)
*20ft	/FCST	18/0	7.	k - 1	5	10	15	20	25	30	35	40	45	50
EV	WS	NWNS/0	Back	Flank	2	4	6	8	10	12	14	16	18	20
	1	2	2	3	3	4	5	6	7	7	8	9	9	10
%	3	1	2	2	3	4	4	5	6	6	7	7	8	8
	5	1	2	2	2	3	4	5	5	6	6	6	7	7
Moisture,	7	1	1	2	2	3	4	4	5	5	6	6	6	7
Mo	9	1	1	2	2	3	4	4	5	5	5	6	6	6
1-hr	11	1	1	2	2	3	3	4	4	5	5	5	6	6
	13	1	1	1	2	2	3	3	4	4	4	4	5	5
	15	1	1	1	1	2	2	2	2	3	3	3	3	3

5.4.3.12 FUEL MODEL 12

SPR	EAD	Table 5.4							•	(EWS),	•			
Ch	/hr	3	*Use 2	Oft/FCS	T wind	l only if	EWS = N	/IFWS ar	nd assur	nes unshe	eltered w	ind adjus	tment (0.	4)
*20ft	/FCST	NWNS-0	(- 1/2	k - 1	5	10	15	20	25	30	35	40	45	50
EV	NS	N	Back	Flank	2	4	6	8	10	12	14	16	18	20
	1	2	4	5	9	17	25	34	43	52	62	72	82	92
	3	2	3	4	7	14	20	28	35	43	50	58	66	75
	5	2	2	4	6	11	17	23	30	36	43	50	56	63
%	7	1	2	3	5	10	15	21	26	32	38	44	50	56
re,	9	1	2	3	5	9	14	19	24	29	34	40	45	51
Moisture,	11	1	2	3	5	9	13	17	22	27	32	37	42	47
Θ	13	1	2	3	4	8	12	16	21	25	30	34	39	44
1-hr	15	1	2	2	4	7	11	15	19	23	27	31	36	40
+	17	1	1	2	3	6	10	13	17	20	24	28	31	35
	19	1	1	2	3	5	8	11	14	16	19	23	26	29
	21	1	1	1	2	4	6	8	10	12	14	16	18	21
	23	<1	<1	1	1	2	3	4	5	6	7	8	9	9

	AME ft	Table 5.4							•	(EWS),	•	ind adjus	tment (0.	4)
*20ft	:/FCST	0-51	- 1/2	ι-1	5	10	15	20	25	30	35	40	45	50
EV	WS	NWNS-0	Back	Flank	2	4	6	8	10	12	14	16	18	20
	1	4	5	6	8	10	12	14	16	17	19	20	21	22
	3	3	4	5	7	9	11	12	14	15	16	17	18	19
	5	3	4	5	6	8	9	11	12	13	14	15	16	17
%	7	3	4	4	5	7	9	10	11	12	13	14	15	16
ıre,	9	3	3	4	5	7	8	9	10	11	12	13	14	15
Moisture,	11	3	3	4	5	6	8	9	10	11	12	13	13	14
Θ	13	2	3	4	5	6	7	9	10	10	11	12	13	14
1-hr	15	2	3	3	4	6	7	8	9	10	11	11	12	13
+	17	2	3	3	4	5	6	7	8	9	10	10	11	12
	19	2	2	3	3	5	5	6	7	8	8	9	9	10
	21	1	2	2	3	3	4	5	5	6	6	7	7	7
	23	1	1	1	1	2	2	2	3	3	3	3	4	4

5.4.3.13 FUEL MODEL 13

SPR	EAD	Table 5.4	1.3.13-1	ROS in F	M13	Effec	tive \	Vinds	peed	(EWS),	mph			
Ch	/hr	;	*Use 2	Oft/FCS	T wind	only if	EWS = N	/IFWS ar	nd assur	nes unshe	eltered w	ind adjus	tment (0.	5)
*20ft	/FCST	NWNS-0	k - ½	1 - Yr	4	8	12	16	20	24	28	32	36	40
EV	NS	Ž	Back	Flank	2	4	6	8	10	12	14	16	18	20
	1	3	5	6	11	20	30	41	52	63	75	86	98	111
	3	2	4	5	9	16	25	34	43	52	61	71	81	91
	5	2	3	5	7	14	21	28	36	44	52	60	69	77
	7	2	3	4	6	12	18	25	31	38	45	52	60	67
%	9	2	2	4	6	11	16	22	28	34	41	47	54	60
	11	1	2	3	5	10	15	20	26	32	37	43	49	55
1-hr Moisture,	13	1	2	3	5	9	14	19	24	29	35	40	46	51
ois	15	1	2	3	5	9	13	18	23	27	33	38	43	48
Š	17	1	2	3	4	8	12	17	21	26	30	35	40	45
ļ	19	1	2	2	4	8	11	15	19	24	28	32	37	42
+	21	1	2	2	4	7	10	14	18	21	25	29	33	37
	23	1	1	2	3	6	9	12	15	18	22	25	29	32
	25	1	1	2	3	5	7	10	12	15	18	21	23	26
	27	1	1	1	2	3	5	7	9	11	13	15	17	19
	29	<1	<1	<1	1	2	3	4	5	6	7	8	9	10

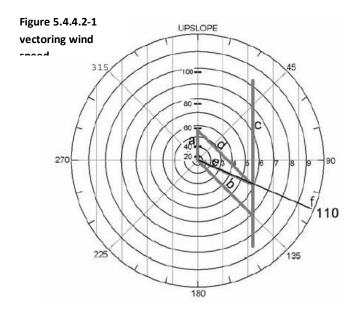
FLA	ME	Table 5.4	l.3.13-2 F	L in FM1	3	Effect	tive V	Vinds	peed(EWS),	mph			
fe	eet	3	*Use 20	ft/FCS	T wind	only if E	WS = M	FWS an	d assum	es unshe	Itered wi	ind adjus	tment (0.	5)
*20ft	/FCST	NWNS-0	k - %	1 - Yr	4	8	12	16	20	24	28	32	36	40
EV	NS	Ž	Back	Flank	2	4	6	8	10	12	14	16	18	20
	1	5	7	8	10	13	16	18	20	22	24	26	27	29
	3	5	6	7	9	11	14	16	18	19	21	22	24	25
	5	4	5	6	8	10	12	14	16	17	19	20	21	22
	7	4	5	5	7	9	11	13	14	16	17	18	19	20
%	9	4	4	5	6	9	10	12	13	15	16	17	18	19
	11	3	4	5	6	8	10	11	13	14	15	16	17	18
Ę	13	3	4	5	6	8	9	11	12	13	14	15	16	17
Moisture,	15	3	4	5	6	8	9	10	12	13	14	15	16	17
Š	17	3	4	4	5	7	9	10	11	12	13	14	15	16
1-hr	19	3	3	4	5	7	8	10	11	12	13	13	14	15
4	21	3	3	4	5	6	8	9	10	11	12	13	13	14
	23	2	3	3	4	6	7	8	9	10	10	11	12	13
	25	2	2	3	4	5	6	7	7	8	9	9	10	11
	27	2	2	2	3	4	4	5	6	6	7	7	8	8
	29	1	1	1	2	2	2	3	3	3	4	4	4	4

5.4.4 Surface Fire Behavior Nomographs & Nomograms For 13 Standard Fuel Models;

5.4.4.1 Primary References

Scott, Joe H. 2007. Nomographs for estimating surface fire behavior characteristics. Gen. Tech. Rep. RMRS-GTR-192. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 119 p... http://www.fs.fed.us/rm/pubs/rmrs_gtr192.pdf

Rothermel, Richard C. 1992. Fire behavior nomograms. Appendix A excerpted from How to Predict the Spread and Intensity of Forest and Range Fuels. PMS 436-3, NFES 2220. Boise, ID: National Wildfire Coordinating Group. 28 p. http://www.nwccweb.us/content/products/fwx/publications/Fire%20Behavior%20Nomograms.pdf

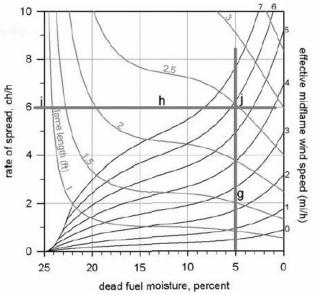

5.4.4.2 Instructions for Nomograph Use

Each fuel model includes a duplicate set of effective windspeed protractor and fire behavior nomograph, one for *low wind speeds* and *one for high wind speeds*. Select the one with applicable windspeeds.

Inputs Required

- Fuel Model
- Midflame Windspeed & direction, azimuth clockwise from upslope
- Slope %
- Dead and Live Fuel Moistures.

<u>Determine Effective Windspeed (EWS) - low or high</u>
Use the vectoring process identified in 5.1.4.1 and shown here if the situation includes cross slope winds



- plot the slope vector (a) in the upslope direction to the hash representing the slope %. Interpolate if necessary
- Plot the wind vector (b) using the concentric circle to for the input windspeed and the azimuth above for direction
- Plot parallel vectors (c&d) and resultant vector (e).
 Read resulting windspeed (e) & direction (f).

Estimate Head Fire Rate Of Spread & Flame Length

If the fuel model includes a live fuel component, use the nomograph that references the input live fuel moisture. Otherwise, there is only one nomograph.

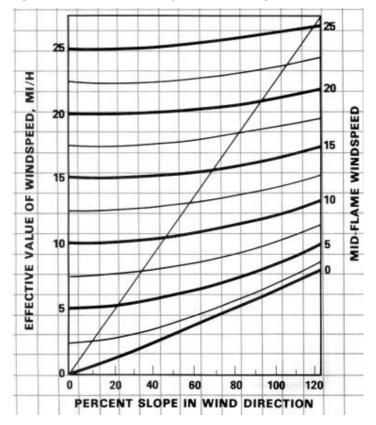
Figure 5.4.4.2-2 Rate of spread from a nomograph

- Using the input dead fuel moisture, draw vertical line
 (g) to the estimated EWS curve.
- Read the *flame length* from the embedded curves at the intersection (j). Interpolate between lines if necessary.
- Draw horizontal line (h) to the left axis and read the Rate of Spread at intersection (i)

<u>Estimate Flanking and Backing Fire Behavior Outputs</u> from table in section 5.4.5.

5.4.4.3 Instructions for Using Nomograms

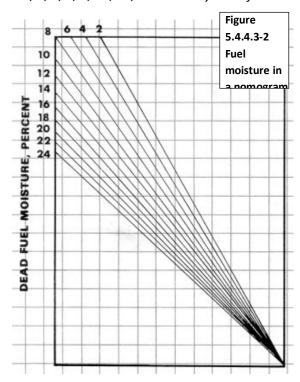
Unlike the newer Nomographs, the original surface fire behavior nomograms have several limitations:

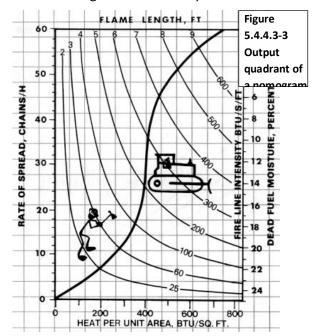

- They are only available for the original 13 fuel models. Nomographs are available for all models.
- They are intended for use with wind blowing within ±30° of upslope. Use in vectoring is possible, though it is not outlined here.

<u>Inputs required include</u>, fuel model, midflame windspeed, percent slope, dead fuel moisture (use 1-hr), and live fuel moisture for fuel models 2, 4, 5, 7, & 10. Select the appropriate windspeed (Low/High) nomogram.

Part I: Effective Windspeed (for all fuel models)

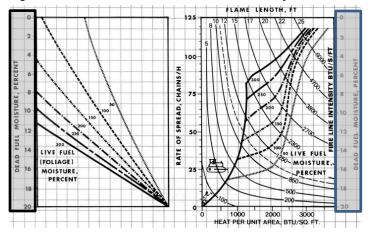
 In lower left quadrant, draw vertical line from percent slope value to intersect midflame windspeed curve.
 Draw horizontal line to left axis and read effective windspeed.


Figure 5.4.4.3-1 Effective windspeed from a nomogram


 In lower right quadrant, identify and highlight the appropriate effective windspeed line. Interpolate by adding line for effective windspeed from 1 above if it is between existing lines.

Part II: Fuel Moisture

For FM 1, 3, 6, 8, 9, 11, 12, 13 with only dead fuel

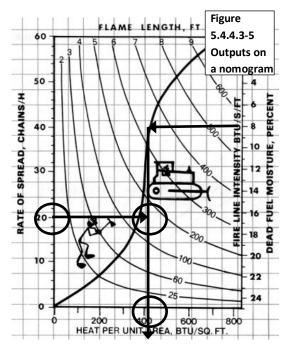


 In the upper left quadrant, identify and highlight the appropriate dead fuel moisture line based on the input value provided. Interpolate by drawing new line between existing lines if necessary.

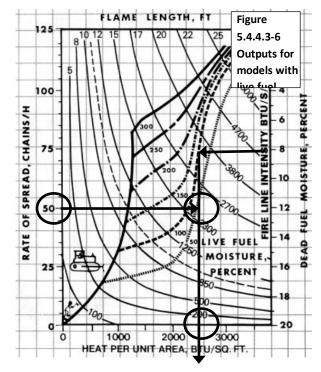
At this point, including the S-curve in the upper right quadrant and the default corner to corner line in the lower left, turning lines have been identified in all 4 quadrants, preparing the nomogram for Part III.

Figure 5.4.4.3-4 For FM 2, 4, 5, 7, 10 with live fuel

- Using the two upper quadrants, locate the appropriate dead fuel moisture value on the two outer vertical axes (highlighted) Connect with a horizontal line.
- Connect the point where the horizontal line intersects the live fuel curve in the upper left quadrant to the origin point, creating a straight line.
- Using the input live fuel moisture provided, identify and highlight the appropriate S-curve in the upper right quadrant. Interpolate by adding a new line between existing lines if necessary.

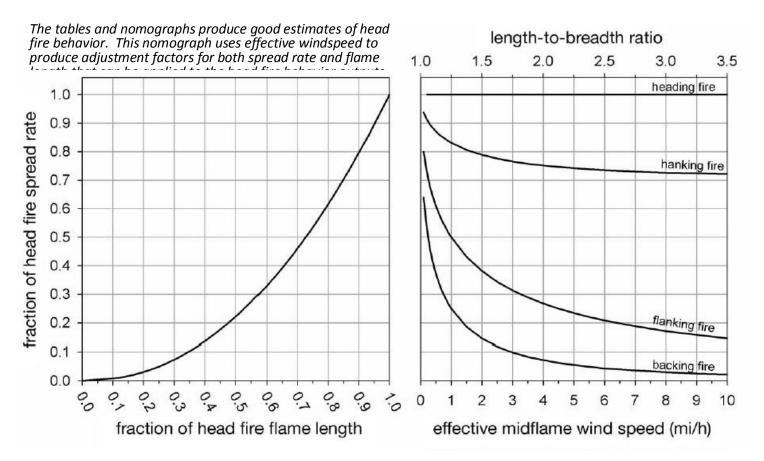

At this point, including the S-curve in the upper right quadrant and the default corner to corner line in the lower left, turning lines have been identified in all 4 quadrants, preparing the nomogram for Part III.

Part III: Estimating Fire Behavior


With the preparations in parts I and II, "turning" lines have been highlighted in the two lower quadrants and the upper left quadrant.

- 1. Begin in the upper right quadrant. Draw horizontal line from dead fuel moisture to the highlighted turning line.
- 2. From intersection, draw vertical line down to the turning line in the lower right quadrant.
- 3. From intersection with turning line in the lower right, draw horizontal line to the turning line in the lower left quadrant.
- 4. From intersection with the turning line in the lower left quadrant, draw vertical line up to the turning line in the upper left quadrant.
- 5. From intersection with turning line in the upper left quadrant, draw horizontal line to the right until it intersects the vert. line drawn in step 2.
- 5. Fire Behavior (Final June 17, 2014)

Part IV: Reading Fire Behavior Outputs


- 6. Read *Heat Per Unit Area* where vertical line from step 2 intersects its axis in the upper right quadrant.
- 7. Read *Rate of Spread* where horizontal line from step 5 intersects its axis in the upper right quadrant.
- 8. Read *Flame Length* and *Fireline Intensity* at the final intersection produced in step 5.

Part V: Flanking and Backing Fire Behavior Outputs from table in section 5

5.4.5 Flanking and Backing Fire Behavior

Figure 5.4.5-1 Nomogram for flanking/backing fire

- 1. Begin with the EWS at the base of the right hand chart, draw vertical line to intersect desired spread direction and the axis at top to read the length to breadth ratio.
- 2. Draw horizontal line from intersection at desired spread direction into and across the left hand chart to intersect the left axis. Read the fraction from left axis and apply it to the headfire ROS to obtain
- the spread rate in the assumed direction.
- 3. Draw vertical line down from where horizontal line intersected curve in left hand chart to bottom axis. Read the fraction from this bottom axis and apply it to the headfire flame length estimate to obtain the flame length in the spread direction assumed.

5.5 Crown Fire Behavior

5.5.1 Spotting and Crownfire Worksheet

Incident/Project:	Obs	erver/Analyst:	Date:
INPUT			
1 TORCHING TREE HEIGHT (ft)	(A)	$\frac{(A)}{2} = $	(D)
2 TORCHING TREE SPECIES	HEIGHT (ft)	RATIO OF NOM	(C) (B) $x(C)=(E)$ (E)
3 TORCHING TREE DBH (in)	NOM 2	TO FLAME	RATIO OF LOFTED FIREBRAND HEIGHT TO FLAME HEIGHT (D)+(E)=
4 AVERAGE TREE COVER HEIGHT (ft)		ECTIVE TREE VER HEIGHT (ft)	MAXIMUM FIREBRAND HEIGHT NOM. 4
5 WINDSPEED AT 20 FT HEIGHT (mi/h)	Ţ	TREETOP WINDSPEED mi/h)	MAXIMUM SPOTTING DISTANCE (mi)

Incident/Project: Observer/Analyst: Date:

	Time and	d Place	Notes
1	Projection Point Identifier		
2	Projection Month/Day		
3	Projection Hour of the Day		
4	Burn Period/Duration, hr or min		
	Crown Fire Asse	ssment Inputs	
5	Surface Fire Intensity (flame, ft)		
6	20 Ft Windspeed (mph)		
7	Rate of Spread (FM 10, WAF=.4)		
8	Canopy Base Height (ft)		
9	Canopy Bulk Density (lb/ft³)		
	Crown Fire Asses	sment Outputs	
10	Threshold Surface FLI or FL		
11	Crown Fire Initiation? (Y/N)		
12	Threshold Crown Fire ROS		
13	Est. Crown Fire ROS (3.34* Line 7)		
14	Active Crown Fire? (Y/N)		
15	Fire Type (Surface, Passive, Active)		

5.5.2 Maximum Spotting Distance Nomograms

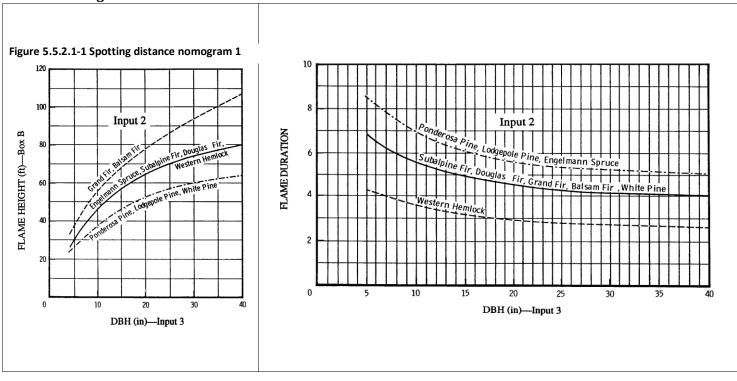
Instructions (Rothermel, 1983), Use worksheet (5.5.1) to document work

Inputs Required:

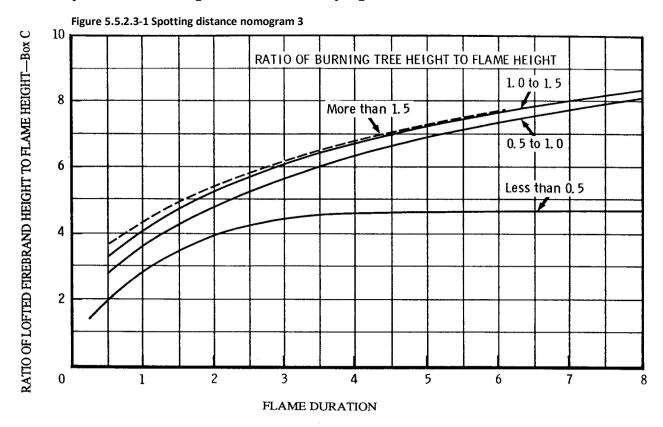
- Torching Tree: Species, Height, DBH
- Open 20 ft Windspeed
- Downwind Average Tree Height (Divide by 2 for open stands)

Nomogram 1(Flame Height) & Nomogram 2 (Flame Duration)

Start with input DBH, draw vertical line to interest curve for input torching tree species, turn and draw horizontal line to determine flame height in Nom 1 and flame duration in Nom 2.

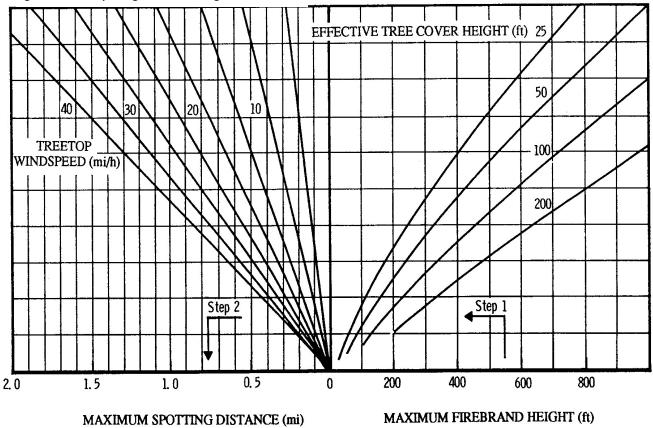

Nomogram 3 (Firebrand Lofting): Divide Flame Height (Nom 1) by the input torching tree height and use that value to select the curve in Nom 3. Using the flame duration (Nom 2), draw a vertical line from the bottom axis to intersect the selected curve. From that intersection, draw a horizontal line to determine ratio for calculating firebrand height.

Multiply ratio from Nom 3 by flame height to determine firebrand height


Nomogram 4: Using the estimated firebrand ht., draw vertical line from bottom axis on right to intersect curve for selected downwind tree ht. From intersection draw horizontal line to line for input windspeed, then down to spot distance.

5.5.2.1 Spot Distance Nomogram 1: Estimating Flame Height

5.5.2.2 Spot Distance Nomogram 2: Estimating Flame Duration Figure 5.5.2.2-1 Spotting distance nomogram 2



5.5.2.3 Spot Distance Nomogram 3: Firebrand Lofting

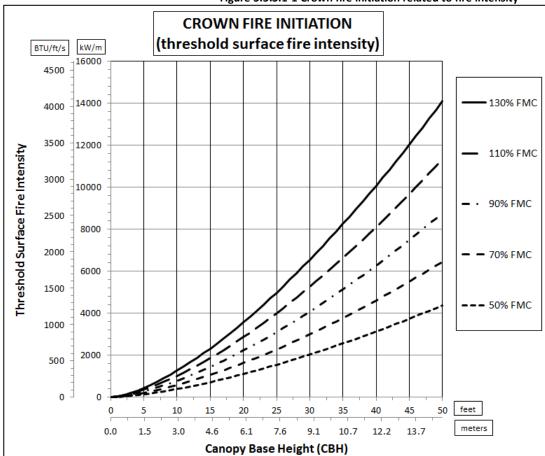
5.5.2.4 Spot Distance Nomogram 4: Maximum Spotting Distance

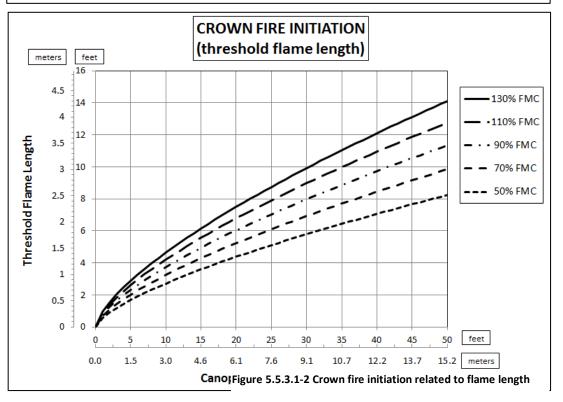
Figure 5.5.2.4-1 Spotting distance nomogram 4

5.5.3 Crown Fire Behavior

5.5.3.1 Crown Fire Initiation

These two graphs identify the height to live crowns (CBH) and the canopy foliar moisture content (FMC) as critical factors, along with the surface fire intensity or flame length, in the evaluation of crown fire potential.


Fire Type: Crown Fire


This assessment only determines whether surface fire behavior is sufficient to initiate crown combustion. Both *passive* and *active* crown fire are possible if this threshold is met. See the criteria for active crown fire in section 5.5.3.2 to differentiate those conditions.

Threshold Evaluation

- Determine the current and/or expected surface intensity (FLI or FL) for that landscape.
- Estimate the CBH and FMC for the landscape you are evaluating for crown fire potential.
- Lookup the threshold surface intensity from either graph here.
- Compare the two intensities. If the projected intensity is greater than the threshold value, crown fire is expected.
- A ratio of projected over threshold provides a confidence value.

Figure 5.5.3.1-1 Crown fire initiation related to fire intensity

5.5.3.2 Active Crown Fire Propagation & Crowning Index

Table 5.5.3.2-1 Crown fire propagation

Crown Fire Spread (R_{act})

Surface rate of spread for fuel model 10 ($R_{FM10,WAF.4}$), using observed or forecasted conditions to determine fuel moistures and winds adjusted to 40% of the 20-ft wind, is the basis for estimating active crown fire spread rate (R_{act}) using the Rothermel model:

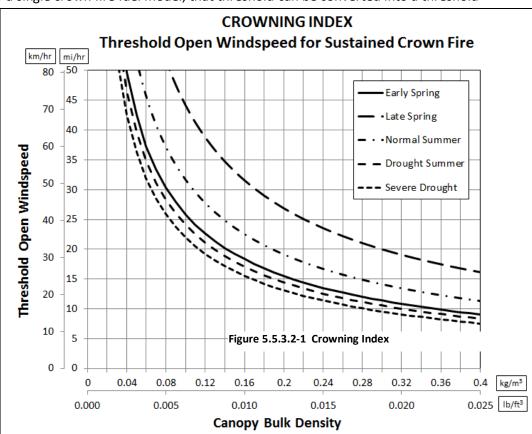
$$R_{act} = 3.34 * R_{FM10,WAF,4}$$

This calculation does not predict potential for active crown fire, only the ROS if there is an active crown fire.

Fire Type: Active Crown Fire

According to Van Wagner

			Table 5.5.5.2-1 Crown fire propagation							
Canopy Bul		Threshold Crown Fire Rate of Spread								
Kg/meter ³	Kg/meter ³ Lb/ft ³		Feet/min	Miles/hr	Chains/hr					
0.02	0.0012	150.0	492	5.59	447					
0.04	0.0025	75.0	246	2.80	224					
0.06	0.0037	50.0	164	1.86	149					
0.08	0.0050	37.5	123	1.40	112					
0.1	0.0062	30.0	98	1.12	89					
0.12	0.0075	25.0	82	0.93	75					
0.14	0.0087	21.4	70	0.80	64					
0.16	0.0100	18.8	62	0.70	56					
0.18	0.0112	16.7	55	0.62	50					
0.2	0.0125	15.0	49	0.56	45					
0.22	0.0137	13.6	45	0.51	41					
0.24	0.0150	12.5	41	0.47	37					
0.26	0.0162	11.5	38	0.43	34					
0.28	0.0175	10.7	35	0.40	32					
0.3	0.0187	10.0	33	0.37	30					
0.32	0.0200	9.4	31	0.35	28					
0.34	0.0212	8.8	29	0.33	26					
0.36	0.0225	8.3	27	0.31	25					
0.38	0.0237	7.9	26	0.29	24					
0.4	0.0250	7.5	25	0.28	22					
Co. (D. Vice and all the shall be shall										


(1977), to determine if active crown fire (R_{act}) is expected, threshold conditions for canopy fuel density are necessary to sustain it. And since there is only a single crown fire fuel model, that threshold can be converted into a threshold

windspeed or "crowning index" or *CI*

The table and graph to the right provide threshold values for both R_{act} and open 20 ft windspeed.

Threshold Evaluation

For a given CBD, if observed or forecast 20 ft wind or projected R_{act} are larger than these threshold values, sustained active crown fire is expected. A ratio of estimate/threshold provides a confidence value.

5.6 Using BehavePlus

5.6.1 Online Resources

Due to periodic updating, users should check the "Splash" information found in the help menu to determine the version currently installed. The latest version can be identified and downloaded, if necessary at http://www.firemodels.org. Install the latest version, as version 4 data files are compatible.

A collection of publications that support the BehavePlus, modeling system can be found at http://www.firemodels.org/index.php/behaveplus-introduction/behaveplus-publications

A comprehensive set of training resources can be found at http://www.firemodels.org/index.php/behaveplus-support/behaveplus-training

5.6.2 Creating A Workspace

To take full advantage of the BehavePlus system, users should consider recording their inputs, assumptions, and configurations within the BehavePlus file structure rather than on paper worksheets provided in the past. There are now enough options within the system that only knowing the fire environment inputs may not be sufficient to duplicate the results. Use these few guidelines to establish a BehavePlus Workspace and record all work, including documentation, by saving in the appropriate file format provided in the software.

In the BehavePlus "File" menu, the workspace submenu allows the user to open an existing workspace, create a new empty workspace, or clone the currently open workspace to a new location. The default workspace is located with the program files and is opened by default each time BehavePlus is opened.

Users should consider either creating a workspace on external storage (network folder or usb flash drive) or cloning the default workspace to one of those locations at the end of a work session when data files need to be shared, backed up, or archived.

There are individual folders for **worksheet** files, **fuel model** definition files, **fuel moisture scenario** files, individual **run** files that include system settings and modeling inputs,

5.6.3 Saving Worksheets, Fuel Models, Moisture Scenarios, and Runs in the Workspace

Worksheets: Regular users of BehavePlus should consider developing and saving a set of preconfigured worksheets for analyses that they frequently conduct. Within these worksheets, modules and how they are configured can be saved along with measurement units for each input and output, as well as settings for output tables and graphs. One may be selected as the default worksheet that is displayed whenever BehavePlus is opened.

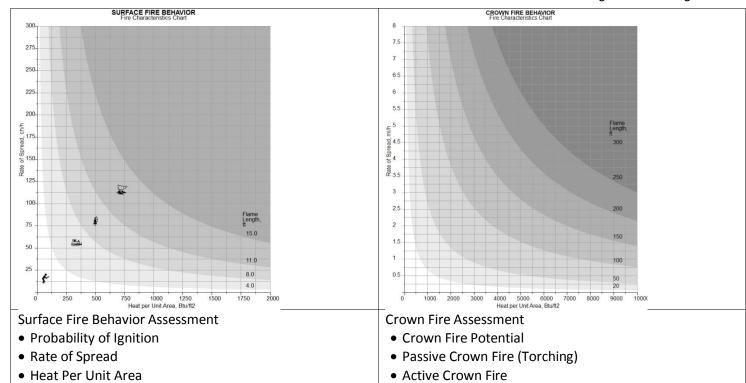
Custom fuel models and **fuel moisture scenarios** can be saved and reused as long as they are stored in the active workspace.

Runs: These files document the modules, settings, inputs, and output formats If they are saved in the current workspace, they can be shared with others by cloning the current workspace to external storage.

5.6.4 Models & Tools Specific to BehavePlus

5.6.4.1 Two-Fuel Model projection

http://www.firemodels.org/downloads/behaveplus/tutorials/Modeling/8 TwoFuelModels/TwoFuel Lesson.pdf


5.6.4.2 Tools Menu

Units Converter, Relative Humidity, Fine Dead Fuel Moisture, Slope from Map Inputs, and Sun-Moon Calendar

5.6.4.3 Special Case Fuel Models (Palmeto-Gallberry and Western Aspen)

5.7 Fire Behavior Interpretations (Hauling Charts)

Figure 5.7-1 Hauling charts

• Long Range Spotting and Ignition

• Fireline Intensity/Flame Length:

5.8 References

Alexander, M.E. 1988. Help with making crown fire hazard assessments. in Fischer, W.C. and S.F. Arno (compilers), Protecting people and homes from wildfire in the interior west. USDA For. Serv. Gen. Tech. Rep. INT-251. pp. 147-156

Andrews, P. L.; Heinsch, F. A.; Schelvan, L. 2011. How to generate and interpret fire characteristics charts for surface and crown fire behavior. General Technical Report RMRS-GTR-253. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, 40p)

<u>Bishop, Jim; The Fireline Assessment Method (FLAME): Part 1 – User's Guide & Part 2 - Technical Documentation; USDA Forest Service; Rocky Mountain Research Station, 75p</u>

Finney, M.A. 1998. FARSITE: Fire Area Simulator-- Model Development and Evaluation. USDA For. Serv. Res. Pap. RMRS-RP-4.

Rothermel, R.C. 1983. How to predict the spread and intensity of forest and range fires. USDA For. Serv. Gen. Tech. Rep. INT-143.

Rothermel, R. C. 1991. Predicting behavior and size of crown fires in the Northern Rocky Mountains. Res. Pap. INT-438. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station. 46 p.

Scott, Joe H.; Reinhardt, Elizabeth D. 2001. Assessing crown fire potential by linking models of surface and crown fire behavior. Res. Pap. RMRS-RP-29. Fort Collins, CO: USDA, For. Serv 59 p.

Scott, J. H. 2007. Nomographs for estimating surface fire behavior characteristics. General Technical Report INT-192. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, 119p.)

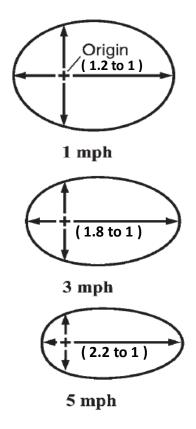
Van Wagner, C. E. 1977. Conditions for the start and spread of crown fire. Canadian Journal of Forest Research. 7: 23-34.

6 Fire Size & Shape

6.1 Estimating Fire Growth, Shape, and Size from Point Source

On initial attack, it is important to get a sense of the fire's growth by plotting its shape on a map and estimating its area and perimeter for increments of time during the first burn period. Using these references, the required inputs for each increment include:

- Effective Windspeed, in MPH
- Total Spread Distance, in chains (estimated Rate of Spread, in ch/hr X Duration, in hours)


Results include the Shape & Length to Width Ratio, the Burned Area in Acres, and the Perimeter in Chains.

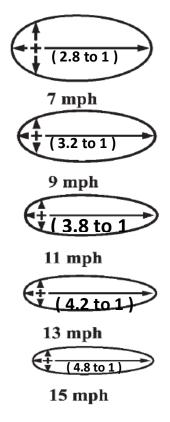

6.2 Fire Shapes & Length to Width Ratio

Table 6.2-1 Fire shapes by windspeed

Effective windspeed in MPH	Length to width ratio
1	1.2 to 1
3	1.8 to 1
5	2.2 to 1
7	2.8 to 1
9	3.2 to 1
11	3.8 to 1
13	4.2 to 1
15	4.8 to 1

Input: Effective Windspeed, in MPH

6.3 Burn Period

6.3.1 Definition

The duration of active fire spread within a 24 hour is generally known as the 'burn period'. Each fire growth projection, whether using non-spatial tools (BehavePlus) or spatial tools (WFDSS analyses NTFB and FSPro) specify a duration as the number of hours or minutes to obtain a resulting fire size and/or perimeter. Characterizing the duration as the number of hours or minutes in a day (burn period) for a projection allows the user to model growth for multiple days.

The NWCG Fire Glossary defines the burn period as that part of each 24-hour period when fires spread most rapidly; typically from 1000 to sundown. WFDSS Help offers "The default burn period in NTFB is 24 hours; however, modeling a fire overnight is generally not advised. NTFB, like FARSITE, has a tendency to over-predict overnight fire spread. For this reason, most analysts shorten the duration that the modeled fire is allowed to burn each day."

Though it is not likely to be a common scenario, more than one burn period can be assigned for each day, if needed.

6.3.2 Factors that Affect Burning Period

Burn period can vary from day to day for a variety of reasons:

- **Solar Radiation** heats fuels as well as warming the air and lowering relative humidity. These influences lower fuel moisture, creating conditions favorable for active burning. Both day length and quality of sunlight are affected by the sun angle based on the time of year and latitude. Cloud cover and shading by canopy trees can further reduce the sun's effect.
- **Fuelbed characteristics** can influence burn period as well. Moisture of light fuels, such as grasses, respond more quickly to changes in temperature and humidity.
- **Diurnal fuel moisture trends** are affected by the quality of night time humidity recovery and inversions. Slope/aspect and recent precipitation all affect the length of the burning period for a given situation.
- **Drought** can influence the length of the burn period through the heat produced in the burning of heavy fuels.
- **Direction of Spread** can be an important factor as well. Backing spread can start later and end earlier in the day for a given situation.

6.3.3 Sources of Information

• *Fireline Observations* are probably the first and most important source of information for determining the burn period. Try and get answers to specific questions as you pursue a reasonable estimate. When and where did fire begin to move and when did it slow down on previous days? Was there spread during the night? What were observed spread rates and when?

Do these reports and modeled spread rates produce realistic spread predictions? Sometimes these reports are incomplete and need to be correlated to other information as suggested below. FSPro seeks burn period information for different types of days. These factors suggest that fireline observations should be reinforced with other information where possible.

Sunrise-Sunset Tables (time of year and latitude) from BehavePlus and solar radiation sensors can show periodicity and suggest timing of beginning and end of active spread.

Figure 6.3.3-1 Example Sun-Moon calendar

Figure 6.3.3-2 Example of solar radiation readings for a station OLUSTEE (EST)

Solar Radiation (Wm^2) 919.9 827.9 735.9 643.9 551.9 459.9

367.9 275.9

183.9 91.9

Sun & Moon Chart Sequoia National Park, California												
October 2003												
	(Lon 118.550, Lat 36.500, GMT -7.0)											
	Day	Sunrise	Sunset	Moonrise	Moonset	Civil Dawn	Civil Dusk					
	Wed 1	06:49	18:37	13:22	22:50	06:23	19:03					
	Thu 2	06:49	18:36	14:25	23:51	06:24	19:02					
	Fri 3	06:50	18:34	15:20		06:24	19:00					
	Sat 4	06:51	18:33	16:04	00:56	06:25	18:59					
	Sun 5	06:52	18:31	16:41	02:03	06:26	18:57					
	Mon 6	06:53	18:30	17:13	03:09	06:27	18:56					
	Tue 7	06:54	18:29	17:40	04:12	06:28	18:55					

Diurnal Wind, Weather and Fuel Moisture Trends can similarly show a periodicity that can suggest timing of active spread.

Figure 6.3.3-3 Example of wind readings from a station

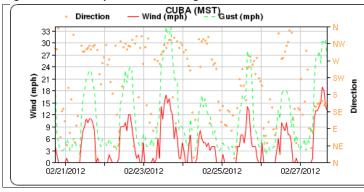
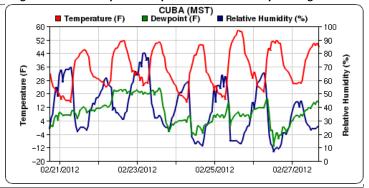



Figure 6.3.3-4 Example of temperature and humidity readings

0.1

-0.05

(Wm^2) 0.05

Fire Progression Maps suggest the overall daily spread around the fire, and with knowledge of weather conditions, fuels, slope and spread direction, can be compared to modeled growth.

6.3.4 Estimating Burning Period

A good starting point for estimating a burn period is to get information from the fireline to estimate the hours that the real-world fire is actively spreading. Ask about flanking and backing spread as well. Then buffer that burn period by an hour or two on each end. Doing so approximates the periods of slower burning and overnight backing fire growth. For example, if the fire you are modeling is actively burning (or anticipated to actively burn) from 1400 to 1800, a reasonable burn period for a first calibration run might be from 1300 to 1900. Without good fireline observations, start with a period between 1200 and sundown.

Using your first estimate, you may need to make adjustments based on the factors discussed above if they will produce different burning conditions than those reported from the field. Frequently, efforts to calibrate modeled growth to observed daily spread will incorporate adjustments to the burn period estimate.

6.4 Surface Fire Area for Point Source Fires, in Acres

Table 6.4-1 Fire area for point source fires

1		101 1 01111						L Fire area fo	r point sour	ce fires	
Spread			Effective Windspeed, in mph								
Distance,	1	3	5	7	9	11	13	15	17	19	
in Chains	Acres										
1	0.1	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
2	0.4	0.2	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.1	
3	1	1	0.3	0.3	0.2	0.2	0.2	0.2	0.1	0.1	
4	2	1	1	1	0.4	0.3	0.3	0.3	0.2	0.2	
5	3	1	1	1	1	1	1	0.4	0.4	0.3	
6	4	2	1	1	1	1	1	1	1	1	
7	5	3	2	2	1	1	1	1	1	1	
8	6	4	3	2	2	1	1	1	1	1	
9	8	4	3	3	2	2	2	1	1	1	
10	10	5	4	3	3	2	2	2	2	1	
11	12	7	5	4	3	3	2	2	2	2	
12	14	8	6	4	4	3	3	2	2	2	
13	17	9	7	5	4	4	3	3	3	2	
14	19	11	8	6	5	4	4	3	3	3	
15	22	12	9	7	6	5	4	4	3	3	
16	25	14	10	8	7	6	5	4	4	4	
17	28	16	11	9	7	6	6	5	4	4	
18	32	18	13	10	8	7	6	6	5	5	
19	35	20	14	11	9	8	7	6	6	5	
20	39	22	16	12	10	9	8	7	6	6	
21	43	24	17	14	11	10	8	8	7	6	
22	48	26	19	15	12	11	9	8	7	7	
23	52	29	21	16	13	12	10	9	8	7	
24	57	31	22	18	15	13	11	10	9	8	
25	61	34	24	19	16	14	12	11	10	9	
26	66	37	26	21	17	15	13	11	10	9	
28	77	43	31	24	20	17	15	13	12	11	
30	88	49	35	28	23	20	17	15	14	13	
32	101	56	40	31	26	22	20	17	16	14	
34	114	63	45	35	29	25	22	20	18	16	
36	127	70	50	40	33	28	25	22	20	18	
38	142	78	56	44	37	31	28	24	22	20	
40	157	87	62	49	41	35	30	27	24	22	
42	173	96	69	54	45	38	34	30	27	25	
44	190	105	75	59	49	42	37	33	30	27	
46	208	115	82	65	54	46	40	36	32	29	
48	226	125	90	71	59	50	44	39	35	32	
50	245	135	97	77	64	54	48	42	38	35	

Table 6.4-1 (continued) Fire area for point source fires

Spread	ontinueuj i	ire area tor p	omit source		tive Wind	speed, in	mph				
Distance,	1	3	5	7	9	11	13	15	17	19	
in Chains	Acres										
52	266	146	105	83	69	59	51	46	41	38	
54	286	158	113	89	74	63	55	49	44	40	
56	308	170	122	96	80	68	60	53	48	44	
58	330	182	131	103	85	73	64	57	51	47	
60	353	195	140	110	91	78	68	61	55	50	
62	377	208	149	118	98	84	73	65	59	53	
64	402	222	159	125	104	89	78	69	62	57	
66	428	236	169	133	111	95	83	74	66	60	
68	454	250	180	142	117	100	88	78	71	64	
70	481	265	190	150	124	106	93	83	75	68	
72	509	281	201	159	132	113	99	88	79	72	
74	538	297	213	168	139	119	104	93	83	76	
76	567	313	224	177	147	126	110	98	88	80	
78	597	330	236	186	154	132	116	103	93	84	
80	628	347	249	196	162	139	122	108	98	89	
82	660	364	261	206	171	146	128	114	103	93	
84	693	382	274	216	179	153	134	119	108	98	
86	726	401	287	227	188	161	141	125	113	103	
88	760	419	301	237	197	168	147	131	118	107	
90	795	439	315	248	206	176	154	137	123	112	
92	831	458	329	259	215	184	161	143	129	117	
94	868	479	343	271	224	192	168	149	135	123	
96	905	499	358	282	234	200	175	156	140	128	
98	943	520	373	294	244	209	183	162	146	133	
100	982	542	389	306	254	217	190	169	152	139	
105	1082	597	428	338	280	240	210	187	168	153	
110	1188	655	470	371	307	263	230	205	184	168	
115	1298	716	514	405	336	287	251	224	202	183	
120	1414	780	559	441	366	313	274	244	219	200	
125	1534	846	607	478	397	339	297	264	238	217	
130	1659	915	657	518	429	367	321	286	258	234	
135	1789	987	708	558	463	396	347	308	278	253	
140	1924	1062	761	600	498	426	373	332	299	272	
145	2064	1139	817	644	534	457	400	356	320	292	
150	2209	1219	874	689	571	489	428	381	343	312	
155	2359	1301	933	736	610	522	457	406	366	333	
160	2513	1386	995	784	650	556	487	433	390	355	

165	2673	1474	1058	834	691	591	518	460	415	378
103	20/3	14/4	1020	034	031	221	210	400	413	3/6

6.5 Surface Fire Perimeter for Point Source Fires, in Chains

Table 6.5-1 Fire perimeter for point source fires

	Table 6.5-1 Fire perimeter for point source f							urce fires		
Spread						peed, in	-			
Distance,	1	3	5	7	9	11	13	15	17	19
in Chains					Acr					
1	4	3	2	2	2	2	2	2	2	2
2	7	6	5	5	5	4	4	4	4	4
3	11	8	7	7	7	7	6	6	6	6
4	14	11	10	9	9	9	9	9	8	8
5	18	14	12	12	11	11	11	11	11	10
6	21	17	15	14	14	13	13	13	13	13
7	25	19	17	16	16	15	15	15	15	15
8	28	22	20	19	18	18	17	17	17	17
9	32	25	22	21	20	20	19	19	19	19
10	35	28	25	23	23	22	22	21	21	21
11	39	30	27	26	25	24	24	23	23	23
12	43	33	30	28	27	26	26	26	25	25
13	46	36	32	30	29	29	28	28	27	27
14	50	39	35	33	32	31	30	30	30	29
15	53	41	37	35	34	33	32	32	32	31
16	57	44	40	37	36	35	35	34	34	34
17	60	47	42	40	38	37	37	36	36	36
18	64	50	45	42	41	40	39	38	38	38
19	67	52	47	44	43	42	41	41	40	40
20	71	55	50	47	45	44	43	43	42	42
21	74	58	52	49	47	46	45	45	44	44
22	78	61	55	51	50	48	48	47	46	46
23	82	64	57	54	52	51	50	49	49	48
24	85	66	60	56	54	53	52	51	51	50
25	89	69	62	59	56	55	54	53	53	52
26	92	72	65	61	59	57	56	55	55	54
28	99	77	70	66	63	62	61	60	59	59
30	106	83	74	70	68	66	65	64	63	63
32	113	88	79	75	72	70	69	68	68	67
34	121	94	84	80	77	75	73	73	72	71
36	128	99	89	84	81	79	78	77	76	75
38	135	105	94	89	86	84	82	81	80	80
40	142	110	99	94	90	88	86	85	84	84
42	149	116	104	98	95	92	91	90	89	88
44	156	122	109	103	99	97	95	94	93	92
46	163	127	114	108	104	101	99	98	97	96
48	170	133	119	112	108	106	104	102	101	101

50	177	138	124	117	113	110	108	107	106	105
30	1//	130	124	11/	113	110	100	107	100	103

Distance, in Chains	Table 6.5-1 (continued) Fire perimeter for point source fires										
The The	Spread						•	-			
52 184 144 129 122 117 114 112 111 110 109 54 191 149 134 126 122 119 117 115 114 113 56 199 155 139 131 126 123 121 119 118 117 58 206 160 144 136 131 128 125 124 122 122 126 60 213 166 149 140 135 132 130 128 127 126 62 220 171 154 145 140 136 134 132 131 130 64 227 177 159 150 144 141 138 137 135 134 66 234 182 164 154 149 145 143 141 139 138 70		1	3	5	7	9	11	13	15	17	19
54 191 149 134 126 122 119 117 115 114 113 56 199 155 139 131 126 123 121 119 118 117 58 206 160 144 136 131 128 125 124 122 122 60 213 166 149 140 135 132 130 128 127 126 62 220 171 154 145 140 136 134 132 131 130 64 227 177 159 150 144 141 138 137 135 134 66 234 182 164 154 149 145 143 141 139 138 68 241 188 169 159 153 150 147 145 144 142 70 248								1			
56 199 155 139 131 126 123 121 119 118 117 58 206 160 144 136 131 128 125 124 122 122 60 213 166 149 140 135 132 130 128 127 126 62 220 171 159 150 144 141 138 137 135 134 64 227 177 159 150 144 141 138 137 135 134 66 234 182 164 154 149 145 143 141 139 138 68 241 188 169 159 153 150 147 145 144 142 70 248 193 174 164 158 156 154 152 151 74 262 204											
58 206 160 144 136 131 128 125 124 122 122 60 213 166 149 140 135 132 130 128 127 126 62 220 171 154 145 140 136 134 132 131 130 64 227 177 159 150 144 141 138 137 135 134 66 234 182 164 154 149 145 143 141 139 138 68 241 188 169 159 153 150 147 145 144 142 70 248 193 174 164 158 154 151 149 148 147 72 255 199 179 169 162 158 156 154 152 151 74 262	54	191	149	134	126	122	119	117	115	114	113
60 213 166 149 140 135 132 130 128 127 126 62 220 171 154 145 140 136 134 132 131 130 64 227 177 159 150 144 141 138 137 135 134 66 234 182 164 154 149 145 143 141 139 138 68 241 188 169 159 153 150 147 145 144 142 70 248 193 174 164 158 156 154 152 151 72 255 199 179 169 162 158 156 154 152 151 74 262 204 184 173 167 163 160 158 156 155 76 269 210	56	199	155	139	131	126	123	121	119	118	117
62 220 171 154 145 140 136 134 132 131 130 64 227 177 159 150 144 141 138 137 135 134 66 234 182 164 154 149 145 143 141 139 138 68 241 188 169 159 153 150 147 145 144 142 70 248 193 174 164 158 156 154 152 151 72 255 199 179 169 162 158 156 154 152 151 74 262 204 184 173 167 163 160 158 156 155 76 269 210 189 178 171 167 164 162 160 159 78 277 215	58	206	160	144	136	131	128	125	124	122	122
64 227 177 159 150 144 141 138 137 135 134 66 234 182 164 154 149 145 143 141 139 138 68 241 188 169 159 153 150 147 145 144 142 70 248 193 174 164 158 154 151 149 148 147 72 255 199 179 169 162 158 156 154 152 151 74 262 204 184 173 167 163 160 158 156 155 76 269 210 189 178 171 167 164 162 160 159 78 277 215 194 183 176 172 169 166 165 163 80 284	60	213	166	149	140	135	132	130	128	127	126
66 234 182 164 154 149 145 143 141 139 138 68 241 188 169 159 153 150 147 145 144 142 70 248 193 174 164 158 154 151 149 148 147 72 255 199 179 169 162 158 156 154 152 151 74 262 204 184 173 167 163 160 158 156 155 76 269 210 189 178 171 167 164 162 160 159 78 277 215 194 183 176 172 169 166 165 163 80 284 221 199 187 180 176 173 171 169 168 82 291	62	220	171	154	145	140	136	134	132	131	130
68 241 188 169 159 153 150 147 145 144 142 70 248 193 174 164 158 154 151 149 148 147 72 255 199 179 169 162 158 156 154 152 151 74 262 204 184 173 167 163 160 158 156 155 76 269 210 189 178 171 167 164 162 160 159 78 277 215 194 183 176 172 169 166 165 163 80 284 221 199 187 180 176 173 171 169 168 82 291 227 204 192 185 180 177 175 173 172 84 298	64	227	177	159	150	144	141	138	137	135	134
70 248 193 174 164 158 154 151 149 148 147 72 255 199 179 169 162 158 156 154 152 151 74 262 204 184 173 167 163 160 158 156 155 76 269 210 189 178 171 167 164 162 160 159 78 277 215 194 183 176 172 169 166 165 163 80 284 221 199 187 180 176 173 171 169 168 82 291 227 204 192 185 180 177 175 173 172 84 298 232 209 197 189 185 182 179 177 176 86 305	66	234	182	164	154	149	145	143	141	139	138
72 255 199 179 169 162 158 156 154 152 151 74 262 204 184 173 167 163 160 158 156 155 76 269 210 189 178 171 167 164 162 160 159 78 277 215 194 183 176 172 169 166 165 163 80 284 221 199 187 180 176 173 171 169 168 82 291 227 204 192 185 180 177 175 173 172 84 298 232 209 197 189 185 182 179 177 176 86 305 238 214 201 194 189 186 183 182 180 88 312	68	241	188	169	159	153	150	147	145	144	142
74 262 204 184 173 167 163 160 158 156 155 76 269 210 189 178 171 167 164 162 160 159 78 277 215 194 183 176 172 169 166 165 163 80 284 221 199 187 180 176 173 171 169 168 82 291 227 204 192 185 180 177 175 173 172 84 298 232 209 197 189 185 182 179 177 176 86 305 238 214 201 194 189 186 183 182 180 88 312 243 219 206 198 194 190 188 186 184 90 319	70	248	193	174	164	158	154	151	149	148	147
76 269 210 189 178 171 167 164 162 160 159 78 277 215 194 183 176 172 169 166 165 163 80 284 221 199 187 180 176 173 171 169 168 82 291 227 204 192 185 180 177 175 173 172 84 298 232 209 197 189 185 182 179 177 176 86 305 238 214 201 194 189 186 183 182 180 88 312 243 219 206 198 194 190 188 186 184 90 319 249 223 211 203 198 194 192 190 189 92 326	72	255	199	179	169	162	158	156	154	152	151
78 277 215 194 183 176 172 169 166 165 163 80 284 221 199 187 180 176 173 171 169 168 82 291 227 204 192 185 180 177 175 173 172 84 298 232 209 197 189 185 182 179 177 176 86 305 238 214 201 194 189 186 183 182 180 88 312 243 219 206 198 194 190 188 186 184 90 319 249 223 211 203 198 194 192 190 189 92 326 254 228 215 207 202 199 196 194 193 94 333	74	262	204	184	173	167	163	160	158	156	155
80 284 221 199 187 180 176 173 171 169 168 82 291 227 204 192 185 180 177 175 173 172 84 298 232 209 197 189 185 182 179 177 176 86 305 238 214 201 194 189 186 183 182 180 88 312 243 219 206 198 194 190 188 186 184 90 319 249 223 211 203 198 194 192 190 189 92 326 254 228 215 207 202 199 196 194 193 94 333 260 233 220 212 207 203 200 199 197 96 340 265 238 225 217 211 207 205 203 201	76	269	210	189	178	171	167	164	162	160	159
82 291 227 204 192 185 180 177 175 173 172 84 298 232 209 197 189 185 182 179 177 176 86 305 238 214 201 194 189 186 183 182 180 88 312 243 219 206 198 194 190 188 186 184 90 319 249 223 211 203 198 194 192 190 189 92 326 254 228 215 207 202 199 196 194 193 94 333 260 233 220 212 207 203 200 199 197 96 340 265 238 225 217 211 207 205 203 201 98 347 271 243 229 221 216 212 209 207 205	78	277	215	194	183	176	172	169	166	165	163
84 298 232 209 197 189 185 182 179 177 176 86 305 238 214 201 194 189 186 183 182 180 88 312 243 219 206 198 194 190 188 186 184 90 319 249 223 211 203 198 194 192 190 189 92 326 254 228 215 207 202 199 196 194 193 94 333 260 233 220 212 207 203 200 199 197 96 340 265 238 225 217 211 207 205 203 201 98 347 271 243 229 221 216 212 209 207 205 100 355 276 248 234 226 220 216 213 211 210	80	284	221	199	187	180	176	173	171	169	168
86 305 238 214 201 194 189 186 183 182 180 88 312 243 219 206 198 194 190 188 186 184 90 319 249 223 211 203 198 194 192 190 189 92 326 254 228 215 207 202 199 196 194 193 94 333 260 233 220 212 207 203 200 199 197 96 340 265 238 225 217 211 207 205 203 201 98 347 271 243 229 221 216 212 209 207 205 100 355 276 248 234 226 220 216 213 211 210 105 372 290 261 246 237 231 227 224 222 220	82	291	227	204	192	185	180	177	175	173	172
88 312 243 219 206 198 194 190 188 186 184 90 319 249 223 211 203 198 194 192 190 189 92 326 254 228 215 207 202 199 196 194 193 94 333 260 233 220 212 207 203 200 199 197 96 340 265 238 225 217 211 207 205 203 201 98 347 271 243 229 221 216 212 209 207 205 100 355 276 248 234 226 220 216 213 211 210 105 372 290 261 246 237 231 227 224 222 220 110 390 304 273 257 248 242 238 235 232 230 <th>84</th> <th>298</th> <th>232</th> <th>209</th> <th>197</th> <th>189</th> <th>185</th> <th>182</th> <th>179</th> <th>177</th> <th>176</th>	84	298	232	209	197	189	185	182	179	177	176
90 319 249 223 211 203 198 194 192 190 189 92 326 254 228 215 207 202 199 196 194 193 94 333 260 233 220 212 207 203 200 199 197 96 340 265 238 225 217 211 207 205 203 201 98 347 271 243 229 221 216 212 209 207 205 100 355 276 248 234 226 220 216 213 211 210 105 372 290 261 246 237 231 227 224 222 220 110 390 304 273 257 248 242 238 235 232 230 115 408 318 286 269 259 253 249 245 243 241 <th>86</th> <th>305</th> <th>238</th> <th>214</th> <th>201</th> <th>194</th> <th>189</th> <th>186</th> <th>183</th> <th>182</th> <th>180</th>	86	305	238	214	201	194	189	186	183	182	180
92 326 254 228 215 207 202 199 196 194 193 94 333 260 233 220 212 207 203 200 199 197 96 340 265 238 225 217 211 207 205 203 201 98 347 271 243 229 221 216 212 209 207 205 100 355 276 248 234 226 220 216 213 211 210 105 372 290 261 246 237 231 227 224 222 220 110 390 304 273 257 248 242 238 235 232 230 115 408 318 286 269 259 253 249 245 243 241 120 425 331 298 281 271 264 259 256 253 251 </th <th>88</th> <th>312</th> <th>243</th> <th>219</th> <th>206</th> <th>198</th> <th>194</th> <th>190</th> <th>188</th> <th>186</th> <th>184</th>	88	312	243	219	206	198	194	190	188	186	184
94 333 260 233 220 212 207 203 200 199 197 96 340 265 238 225 217 211 207 205 203 201 98 347 271 243 229 221 216 212 209 207 205 100 355 276 248 234 226 220 216 213 211 210 105 372 290 261 246 237 231 227 224 222 220 110 390 304 273 257 248 242 238 235 232 230 115 408 318 286 269 259 253 249 245 243 241 120 425 331 298 281 271 264 259 256 253 251 125 443 345 310 293 282 275 270 267 264 262<	90	319	249	223	211	203	198	194	192	190	189
96 340 265 238 225 217 211 207 205 203 201 98 347 271 243 229 221 216 212 209 207 205 100 355 276 248 234 226 220 216 213 211 210 105 372 290 261 246 237 231 227 224 222 220 110 390 304 273 257 248 242 238 235 232 230 115 408 318 286 269 259 253 249 245 243 241 120 425 331 298 281 271 264 259 256 253 251 125 443 345 310 293 282 275 270 267 264 262 130 461 359 323 304 293 286 281 277 275 272	92	326	254	228	215	207	202	199	196	194	193
98 347 271 243 229 221 216 212 209 207 205 100 355 276 248 234 226 220 216 213 211 210 105 372 290 261 246 237 231 227 224 222 220 110 390 304 273 257 248 242 238 235 232 230 115 408 318 286 269 259 253 249 245 243 241 120 425 331 298 281 271 264 259 256 253 251 125 443 345 310 293 282 275 270 267 264 262 130 461 359 323 304 293 286 281 277 275 272 135 479 373 335 316 304 297 292 288 285 28	94	333	260	233	220	212	207	203	200	199	197
100 355 276 248 234 226 220 216 213 211 210 105 372 290 261 246 237 231 227 224 222 220 110 390 304 273 257 248 242 238 235 232 230 115 408 318 286 269 259 253 249 245 243 241 120 425 331 298 281 271 264 259 256 253 251 125 443 345 310 293 282 275 270 267 264 262 130 461 359 323 304 293 286 281 277 275 272 135 479 373 335 316 304 297 292 288 285 283	96	340	265	238	225	217	211	207	205	203	201
105 372 290 261 246 237 231 227 224 222 220 110 390 304 273 257 248 242 238 235 232 230 115 408 318 286 269 259 253 249 245 243 241 120 425 331 298 281 271 264 259 256 253 251 125 443 345 310 293 282 275 270 267 264 262 130 461 359 323 304 293 286 281 277 275 272 135 479 373 335 316 304 297 292 288 285 283	98	347	271	243	229	221	216	212	209	207	205
110 390 304 273 257 248 242 238 235 232 230 115 408 318 286 269 259 253 249 245 243 241 120 425 331 298 281 271 264 259 256 253 251 125 443 345 310 293 282 275 270 267 264 262 130 461 359 323 304 293 286 281 277 275 272 135 479 373 335 316 304 297 292 288 285 283	100	355	276	248	234	226	220	216	213	211	210
115 408 318 286 269 259 253 249 245 243 241 120 425 331 298 281 271 264 259 256 253 251 125 443 345 310 293 282 275 270 267 264 262 130 461 359 323 304 293 286 281 277 275 272 135 479 373 335 316 304 297 292 288 285 283	105	372	290	261	246	237	231	227	224	222	220
120 425 331 298 281 271 264 259 256 253 251 125 443 345 310 293 282 275 270 267 264 262 130 461 359 323 304 293 286 281 277 275 272 135 479 373 335 316 304 297 292 288 285 283	110	390	304	273	257	248	242	238	235	232	230
125 443 345 310 293 282 275 270 267 264 262 130 461 359 323 304 293 286 281 277 275 272 135 479 373 335 316 304 297 292 288 285 283	115	408	318	286	269	259	253	249	245	243	241
130 461 359 323 304 293 286 281 277 275 272 135 479 373 335 316 304 297 292 288 285 283	120	425	331	298	281	271	264	259	256	253	251
135 479 373 335 316 304 297 292 288 285 283	125	443	345	310	293	282	275	270	267	264	262
	130	461	359	323	304	293	286	281	277	275	272
140 496 387 348 328 316 308 303 299 296 293	135	479	373	335	316	304	297	292	288	285	283
	140	496	387	348	328	316	308	303	299	296	293
145 514 401 360 339 327 319 313 309 306 304	145	514	401	360	339	327	319	313	309	306	304
150 532 414 372 351 338 330 324 320 317 314	150	532	414	372	351	338	330	324	320	317	314
155 550 428 385 363 350 341 335 331 327 325	155	550	428	385	363	350	341	335	331	327	325
160 567 442 397 374 361 352 346 341 338 335	160	567	442	397	374	361	352	346	341	338	335

6. Fire Size & Shape (Final June 17, 2014) Page **147** of **192**

i			1						i .	ii.
165	585	456	410	386	372	363	357	352	348	346

6.6 Crown Fire Area, in acres

Table 6.6-1 Fire area for crown fires

Spread	Maximum Sustained 20 ft Windspeed, in mph								vii iiies			
Distance,	10	15	20	25	30	35	40	45	50	60		
in Miles		Area, in Acres										
0.25	14	11	9	8	7	6	5	5	4	4		
0.5	56	44	36	30	26	23	21	19	17	15		
1	223	175	144	122	106	94	84	76	69	59		
1.5	503	393	323	274	238	210	188	171	156	133		
2	894	699	574	487	423	374	335	303	277	237		
2.5	1396	1093	898	762	661	584	524	474	433	370		
3	2011	1574	1293	1097	952	842	754	683	624	532		
3.5	2737	2142	1759	1493	1296	1146	1026	929	849	724		
4	3574	2797	2298	1950	1693	1496	1340	1214	1109	946		
4.5	4524	3540	2908	2468	2143	1894	1696	1536	1404	1198		
5	5585	4371	3590	3046	2646	2338	2094	1897	1733	1478		
5.5	6758	5289	4344	3686	3201	2829	2534	2295	2097	1789		
6	8042	6294	5170	4387	3810	3367	3016	2731	2496	2129		
8	14298	11190	9191	7799	6773	5985	5362	4856	4437	3785		
10	22340	17484	14362	12186	10582	9352	8378	7587	6933	5914		
12	32170	25176	20681	17547	15238	13466	12064	10926	9984	8516		
14	43787	34268	28149	23884	20741	18329	16420	14871	13589	11591		
16	57191	44758	36766	31195	27090	23940	21447	19423	17749	15139		
18	72382	56647	46531	39481	34286	30300	27143	24583	22463	19160		
20	89361	69935	57446	48742	42329	37407	33510	30349	27733	23654		
22	108127	84621	69510	58978	51218	45262	40547	36722	33557	28622		
24	128680	100706	82723	70189	60954	53866	48255	43703	39935	34062		
30	201062	157353	129254	109670	95240	84165	75398	68285	62399	53222		
35	273668	214175	175929	149273	129632	114559	102625	92944	84931	72441		
40	357443	279738	229785	194969	169315	149627	134041	121396	110931	94617		

6.7 Crown Fire Perimeter, in miles

Table 6.7-1 Fire perimeter for crown fires

Spread			Maxin	num Sust	ained 20	ft Winds		nph		
Distance,	10	15	20	25	30	35	40	45	50	60
in Miles				P	erimeter,	In Miles				_
0.25	1	1	1	0	0	0	0	0	0	0
0.5	1	1	1	1	1	1	1	1	1	1
1	2	2	2	2	2	2	2	2	2	2
1.5	3	3	3	3	3	3	3	3	3	3
2	5	4	4	4	4	4	4	4	4	4
2.5	6	5	5	5	5	5	5	5	4	4
3	7	6	6	6	6	6	5	5	5	5
3.5	8	7	7	7	7	7	6	6	6	6
4	9	8	8	8	8	7	7	7	7	7
4.5	10	10	9	9	9	8	8	8	8	8
5	11	11	10	10	10	9	9	9	9	9
5.5	12	12	11	11	10	10	10	10	10	10
6	14	13	12	12	11	11	11	11	11	11
8	18	17	16	16	15	15	15	14	14	14
10	23	21	20	20	19	19	18	18	18	18
12	27	25	24	23	23	22	22	22	21	21
14	32	30	28	27	27	26	26	25	25	25
16	36	34	32	31	30	30	29	29	29	28
18	41	38	36	35	34	34	33	33	32	32
20	45	42	40	39	38	37	37	36	36	35
22	50	47	44	43	42	41	40	40	39	39
24	54	51	48	47	46	45	44	43	43	42
30	68	64	61	59	57	56	55	54	54	53
35	79	74	71	68	67	65	64	63	63	61
40	91	85	81	78	76	75	73	72	71	70

7 Mapping: Scope, Scale & Geography

7.1 Slope & Scale

Standard LANDFIRE slope themes are represented in units of degrees (°). Many locally produced landscapes over the years stored slopes in percent (%). It is much easier to estimate slope in %, estimating the elevation change and the horizontal distance and calculating the ratio. BehavePlus, and BEHAVE tools before that, default to slope input in %.

To convert from slope in degrees (°) to slope in percent (%), a scientific calculator is needed.

- Enter the slope in degrees
- Press the Tangent button
- Multiply the result by 100 to get slope in %

Slope	Slope
(Degrees)	(Percent)
10⁰	17.6 %
20º	36.4 %
30º	57.7 %
40⁰	83.9 %
45º	100 %
50º	119.2 %
60º	173.2 %
70º	274.7 %
80º	567.1 %
90º	∞

7.1.1 Calculating slope from contour map measurements

See Firefighter Math (http://www.firefightermath.org) for additional explanation, examples, and exercises.

The process for directly calculating slope with measurements from a contour map:

Table 7.1-1 Slope in degrees and percer

1. Determine the contour interval. This is the elevation change between adjacent contour lines.

Example: 40 ft.

- 2. Determine the map scale and conversion factor. The map scale must be found in terms of the number of feet that each inch on the map represents (ft/in).
 - a. Map scales are usually given as the number of inches per mile, such as 2 in/mi, or as a representative fraction such as 1:31,680.
 - b. Use the spacing of section lines to determine the map scale. Normally section line spacing is 1 mile; be careful of foreshortened sections; look around on the map and find square sections with equal spacing. Measure the distance with a ruler graduated in inches and tenths of inches. Divide 5,280 by the map distance between section lines.

Example: Map dist. between section lines = 2.64 in Map scale = 5,280/2.64 = 2,000 ft/in

3. Determine rise in elevation by counting contour intervals and convert to feet.

Example: 11 contour intervals 11 x 40 ft/contour interval = 440 ft.

Scale	Rep.	Map	Map	Feet per					
Scale	fraction	(in/mi)	(in/ch)	map inch					
1:253,440	253.44	0.25	0.0031	21120					
1:126,720	126.72	0.50	0.0063	10560					
1:63,360	63.36	1	0.0125	5280					
1:62,500	62.5	1.01	0.0127	5188					
1:31,680	31.68	2	0.025	2640					
1:24,000	24	2.64	0.033	2000					
1:21,120	21.12	3	0.0375	1760					
1:15,840	15.84	4	0.05	1320					
1:7,920	7.92	8	0.1	660					

Table 7.1.1-1 Map scales and conversions

4. Measure the horizontal distance with a ruler graduated in inches and tenths of inches, and convert to feet with the map scale from step 2.

Example: Map dist. of slope length = 1.2 in 1.2 in x 2,640 ft/in = 3,168 ft.

5. Divide the rise in elevation from step 3 by the horizontal distance from step 4.

7.2 GPS Use for GIS Application

Set Up Before Going To The Field:

- Make sure fresh batteries are loaded and extra sets available.
- Transfer background maps using MapSource for the area of mapping (if available).
- Turn unit on to initialize and acquire satellites if you are in a new area or haven't used the unit in at least a week. This may take as long as 20 minutes in the open, away from buildings, canopy and obstructions.
- Download and clear old Waypoints and Tracks from memory. Download any data you don't need, make a copy and clean up waypoints in list and clear all saved tracks and active tracklogs.
- Turn off active tracklog. Set tracklog to the preferred Collection method (Time is best) and an appropriate logging rate for the data collection. 5 seconds works for most walking collection, but keep in mind the total storage capacity of the GPS.
- Ensure Simulator Mode is not ON when collecting data.
- Set unit time and date (Ensure Daylight Savings Time if needed).
- Check Interface Protocol is set properly.
- Set the Coordinate System (UTM or LAT/LONG)
 and Datum to ensure compatibility with any
 written coordinates you may need to navigate to
 or Map.
- Set Heading to Magnetic or True. If set to true, ensure compass has same declination.

Field – GPS Data Collection:

- Hold GPS antenna away from body with antenna up. Better yet, hold at, or above the head.
 Purchase an external antenna to free hands if needed or for better reception in vehicles.
- Mark (save) waypoints for point locations at beginning and ending of track log collections.
 Writing down a position is just backup.

- Most GPS units will collect data no matter what the GPS quality is. It's up to you to monitor the GPS Satellite Page continuously for anomalies and Accuracy.
- Collect only when "3D GPS" is shown. Do not collect data in 2D unless absolutely necessary.

Waypoints:

- Collect all waypoints in Averaged Position mode if you are standing still (when possible and if your receiver has that capability). Minimum of 10 positions, maximum of 20 minutes. Somewhere in between is enough to generate a quality position in most cases.
- Collect an instantaneous waypoint only when moving or in a hurry (or if using the eTrex line).
- Edit default waypoint numbers to letters or words that are more descriptive or make good field notes to ensure you remember what features are represented by which numbers.

Tracklogs:

- Use "Stop when Full" or "Fill" Record Mode rather than wrap to prevent overwriting tracklog points when Active Tracklog becomes full.
- Turn on Active Tracklog at start location and immediately begin moving.
- Stop Active Tracklog when movement is stopped temporarily or when mission is finished.
- Always Stop Active Track just shy of starting point when collecting an area (polygon). Overlapping with start point makes conversion to GIS more challenging.
- Always turn Active Tracklog to OFF when finished collecting or turn receiver off to avoid collecting unwanted positions after mission is complete.
- Use caution when saving an Active Tracklog.
 Garmin will generalize any active track to save space, thereby degrading data. If you save a track log and clear the active track, you won't be able to go back to the more detailed track log positions.

7.3 Average Latitude for Each State

7.15 11.01 age	
Alabama	33
Alaska	65
Arizona	35
Arkansas	35
California	38
Colorado	39
Connecticut	41
Delaware	39
Florida	28
Georgia	33
Hawaii	21
Idaho	45
Illinois	40

Indiana	40
lowa	42
Kansas	39
Kentucky	37
Louisiana	31
Maine	45
Maryland	39
Massachusetts	42
Michigan	43
Minnesota	46
Mississippi	32
Missouri	39

47
41
39
44
40
34
43
35
47
40
35
44
41

41
34
44
36
32
39
44
37
47
38
44
43

Table 7.3-1 Average latitude by state

7.4 GIS Data

7.4.1 Sources of Geographic Data

LANDFIRE Data Distribution Site: Raster Data for vegetation, fuels, & terrain (http://landfire.cr.usgs.gov/viewer/)

United States Geological Survey Rapid Data Delivery System (RDDS) (http://rmgsc.cr.usgs.gov/rdds/index.shtml)

This is a very functional, efficient, and reliable system from which to obtain geospatial information. A user can zoom to an area of interest or select *Quick Find* to view a fire location, define an area for data extraction, select products, specify a projection, and download the data. Products include vector and raster data, such as active and previous fires, moderate resolution imaging spectroradiometer (MODIS), Remote Automated Weather Stations (RAWS), roads, rivers, lakes, ownership, orthoimagery, digital raster graphics (DRG), and digital elevation models (DEM). UserID/Password

USFS ArcGIS Image Server (http://fsweb.rsac.fs.fed.us/imageserver/imageserver.html)
USFS Geodata Clearinghouse (http://data.fs.usda.gov/geodata/)
National Park Service (NPS) Data and Information (http://www.nps.gov/gis/data_info)
RSAC – USGS Monitoring Trends in Burn Severity (MTBS) Website (http://www.mtbs.gov)

National Weather Data in shapefile Format: http://www.srh.noaa.gov/gis/kml/shapepage.htm

7.4.2 Map Datum

Some common datums, or GCSs, used in North America follow:

North American Datum of 1927 (NAD27)

Local datum well suited to the United States, Canada, Mexico, and the Carribean. Uses the Clarke 1866 spheroid.

North American Datum of 1983 (NAD83)

An earth-centered datum that corrects NAD27 coordinates based on both earth and satellite measurements. Uses the GRS 1980 spheroid. Coordinates are very similar to WGS84 coordinates and can be used interchangeably with them.

World Geodetic System of 1984 (WGS84)

Earth-centered datum common for datasets with a global extent. Uses the WGS 1984 spheroid. This is the datum that GPS coordinates are based on.

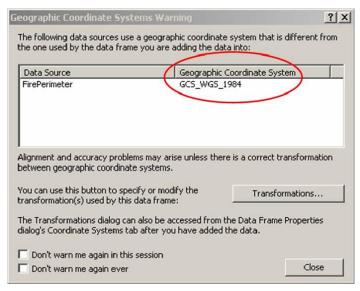
Geographic transformations

ArcGIS gives us a warning if we attempt to add data to our map that have a different GCS, or datum. For example if we have one layer depicting the 40 fire behavior fuel models. As with projection on-the-fly, the data frame's GCS defaults to that of the first layer added to the map, which is **North American 1983,.** If we then try to add a fire perimeter shapefile with the **WGS 1984** geographic coordinate system, we get a warning that a geographic transformation may be necessary. A **geographic transformation**, sometimes referred to as a datum transformation, is a set of mathematical formulas for converting coordinates from one datum to another. At this point, you may specify the transformation by clicking the transformations box in the warning dialog box

7.4.3 Map Projections & Coordinate Systems

A projected coordinate system can reference the same geographic locations using a Cartesian system, which includes a uniform, linear unit of measure.

Universal Transverse Mercator (UTM)


The UTM system divides the earth into 60 zones, each six degrees of latitude wide. This figure depicts a simplified view of the UTM zones covering the conterminous United States.

State Plane Coordinate Systems

A good example of a PCS being independent of a particular map projection. **Lambert Conformal**

Conic projections are used for greatest in east-west extent, **Transverse Mercator** projections are used for greatest in north-south extent, & the some use an oblique Mercator projection.

Figure 7.4.2-1 Coordinate system warning in ArcGIS

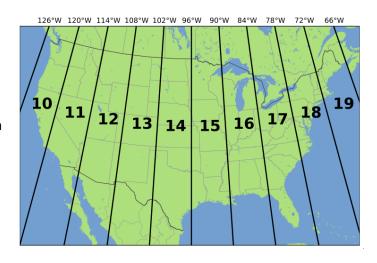


Figure 7.4.4-2 Project tool input screen

Show Help >>

Page **154** of **192**

Project

Input Dataset or Feature Class

GCS_North_American_1983
Output Dataset or Feature Class

Output Coordinate System

NAD_1983_UTM_Zone_12N

Geographic Transformation (optional)

Input Coordinate System (optional)

C:\S495\Unit 9\Lesson 3\sequoia_2006_utm

Cancel

Environments...

sequoia_2006_geo

7.4.4 Reprojecting shapefile or arcgrid in ArcGIS

If a shapefile or ascii grid will not display as an overlay on a landscape (lcp) in FARSITE, FLAMMAP, it cannot be used or displayed by those systems. It is most likely using a different coordinate system than the lcp does.

In this case, the file (feature/shapefile or raster/ascii grid) can be re-projected to the same coordinate system so it can be displayed onscreen and used in reference by the landscape editor in FARSITE.

- 1. Open up a new ArcMap window and add the shapefile or raster file that is stored in the desired projection. By adding the shapefile (or grid) with the desired projection first, the coordinate system of the
 - desired projection first, the coordinate system of the Data Frame will default to the desired projection.
- 2. Next, add the shapefile that is stored in the other projection.
- 3. If the ArcToolbox window is not already displayed, click on the ArcToolbox icon to show the ArcToolbox window.
- 4. In the ArcToolbox window, click on the plus sign next to "Data Management Tools" to expand the selection. Next, click on the plus sign next to "Projections and Transformations" to expand the selection. Next, click on the plus sign next to "Feature" (for shapefiles or "Raster" (for grids) to expand the selection. Double-click on "Project" to open up the tool.
 Figure 7.4.4-1 Project tool in ArcToolbox
- 5. In the Project window, under "Input Dataset or Feature Class," select the shapefile/raster grid that is currently stored in the wrong projection. The Input Coordinate System should automatically default to its projection." If none is displayed, that means that there is no prj file accompanying it. If known, it can be specified here.
- 6. Specify an output shapefile or raster grid under "Output

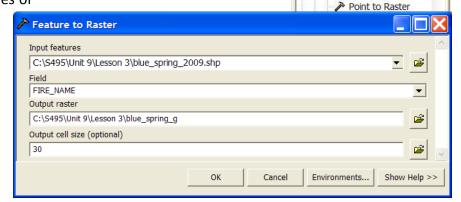
Dataset or Feature Class." Click on the button next to "Output Coordinate System." In the "Spatial Reference Properties" window that pops up, click on the "Import" button. Navigate to and select the shapefile that is stored in desired coordinate system. The new projection properties will load into the "Spatial Reference Properties" window. Click "OK" on the "Spatial Reference Properties" window.

Click "OK" in the "Project" window to create a new shapefile that is stored in the chosen UTM projection.

If during the re-projection process, the user discovers that the feature or raster does not have a defined projection; one can be added by selecting "Define Projection", also found under "Projections and Transformations".

7.4.5 Convert a shapefile to an ASCII raster file

Understanding Raster Data; http://www.fire.org/niftt/released/RasterPrimer.pdf


While shapefiles can be displayed in both FLAMMAP and FARSITE, they cannot be used to make edits to an LCP using the FARSITE Landscape Calculator. In order to be used by the Calculator, a shapefile must be converted to an ASCII Raster. This is a two-step process and can be done in ArcGIS using the ArcToolbox. The first step is to convert the shapefile to a Raster GRID. The final step is to export the Raster GRID as an ASCII Raster.

Part A: Converting a shapefile to a Raster GRID file

- 1. Within ArcMap or ArcCatalog, click on the ArcToolbox icon
- 2. In ArcToolbox, click on the plus sign next to "Conversion Tools" to expand the selection. Next, click on the plus sign next to "To Raster" to expand the selection. Double-click on "Feature to Raster" to open up the tool.
- 3. In the "Feature to Raster" tool window, below "Input Features," select or navigate to the shapefile that you want to convert. Under "Field" select a non-numeric attribute field.
- 4. Below "Output Raster," specify the name and location of the output raster GRID file. Keep in mind that the names of

raster GRID files have a maximum length of 13 characters.

5. Under "Output cell size," specify an output cell size of 30 meters so that the output grid resolution is consistent with the resolution of the FARSITE LCP. Click "OK" to create the raster GRID file.

Feature to

Raster tool

3D Analyst Tools

Cartography Tools

ASCII to Raster
DEM to Raster

Feature to RasterFloat to Raster

⊕ So To CAD

□ So To Raster

Analysis Tools

Part B: Converting a Raster GRID to an ASCII Raster file

- 1. In ArcToolbox, click on the plus sign next to "Conversion Tools" to expand the selection. Next, click on the plus sign next to "From Raster" to expand the selection. Double-click on "Raster to ASCII" to open up the tool.
- 2. Below "Input raster," select the raster GRID file you created in Part A. Under "Output ASCII raster file," specify an output name and location. Be sure to specify the file type as .ASC. Click "OK" to create the ASCII Raster file.

Input raster

C:\S495\Unit 9\Lesson 3\blue_spring_g

Output ASCII raster file

C:\S495\Unit 9\Lesson 3\blue_spring.ASC

OK Cancel Environments... Show Help >>

ArcToolbox
• SD Analyst Tools

Analysis Tools

Cartography Tools

Raster to ASCI

Conversion ToolsFrom Raster

Figure 7.4.5-2 Raster to ASCII tool

7.5 Google Earth Fire Applications

7.5.1 National Weather Service Data

The National Weather Service produces several data sets that are available in formats available to import into Geographic Information Systems (GIS). GIS is a collection of computer hardware, software, and geographic data for capturing, managing, analyzing, and displaying all forms of geographically referenced information. It takes the numbers and words from the rows and columns in databases and spreadsheets and puts them on a map

- NDFD Forecast Graphic: http://www.srh.noaa.gov/gis/kml/webpageforecast/coordinateforecast.kmz
- National Weather Data in KML/KMZ Format: http://www.srh.noaa.gov/gis/kml/index.htm

7.5.2 Geospatial Equipment and Technology Application (GETA) Group Common Operating Picture (COP) The (GETA) Group is a growing circle of people who are interested in experiential training, incident management, and geospatial technology in general. Their website (http://geta.firenet.gov/) provides the user links within the Navigation Tabs to the left will navigate to sub-pages that go into further detail about the training and incident management applications provided.

• Common Operating Picture, or COP (http://geta.firenet.gov/incident-applications/c-c)

A <u>Common Operating Picture</u> is a single identical display of relevant operational information shared by more than one command. A COP facilitates collaborative planning and assists all <u>i</u>ncident responders to achieve <u>situational awareness</u>.

Incident responders have the ability with networked mobile devices to show what they are seeing from an incident anywhere; terrain matched photos, video clips, incident specific locations (helispots, water sources, spot fires, dozer line, fire perimeter, etc.) and text messages all on a geospatial platform.

Meanwhile all incident information is simultaneously viewed and updated at the Incident Command Post, helibase, and local unit offices or being able to brief the public using near real-time information.

This page will outline ideas and working examples of how to use a Geospatial viewing platform as an incident management planning and operational tool.

GETA Group focuses on a ground-up approach to developing a Common Operating Picture. In other words, we want incident responders to decide how the tool works best for them.

For the last year GETA Group has worked with partners in the Northern Rockies, Pacific North-West, South-West, Southern Areas and the National Interagency Fire Center (NIFC) to develop the infrastructure for a Google Earth based National Fire COP.

Included in the National Fire COP is the ability for Geographic Areas down to an individual unit to build or incorporate data that specifically pertains to the individual situation for those areas.

In the National Fire COP users will find the:

- ✓ Northern Rockies COP
- ✓ Pacific Northwest COP
- ✓ Southwest COP
- ✓ Southern COP
- ✓ Texas Forest Service COP

The National Fire COP can be downloaded here: (https://sites.google.com/a/firenet.gov/cop/home).

7.5.3 Finding a section, township, and range in Google Earth:

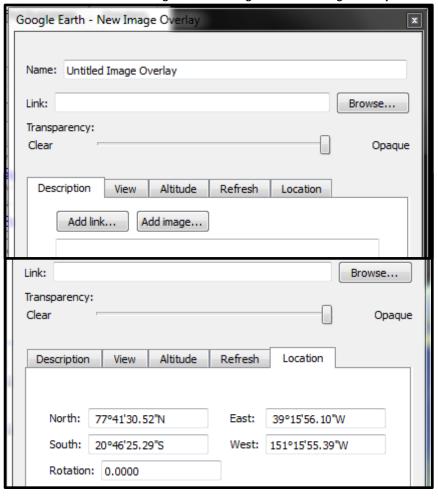
✓ Navigate to the Earth Point website (http://www.earthpoint.us/townships.aspx).

- ✓ Then scroll down to the middle of the page to the section called Convert Township, Range, and Section to Latitude and Longitude
- ✓ Select the appropriate state, meridian, township range and section from the drop-down menus.
- ✓ Click Fly to on Google Earth
- ✓ You can now view the terrain in the section of interest to gather information.

7.5.4 Overlay a GeoTIFF image

This handy trick allows the user to drape a georeferenced TIFF file over the 3D landscape displayed in Google Earth. The example here utilizes WFDSS to obtain the landscape file and its georeferencing coordinates and FLAMMAP to produce the TIFF image. A third tool, an image editor, is required to crop the image.

- 1. Obtain georeferenced landscape (Icp) file. Login to WFDSS and navigate to an analysis that includes the landscape edits and analysis area of interest.
 - ✓ In the selected analysis, select "Landscape" on the left side menu.
 - ✓ Once the heading says "(The LCP file exists), click the Download LCP File button on the bottom row.

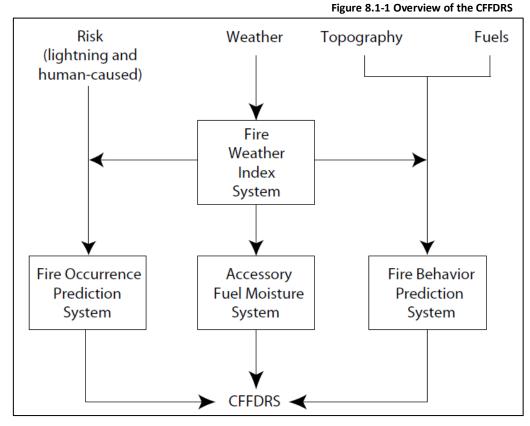

- ✓ Note the top and bottom latitudes and the left and right longitudes from the Landscape File screen.
- ✓ Also, note the resolution (30 m). If a larger area is needed, increase the resolution to 60 or 90 m. The larger the file, the more difficult it is for Google Earth and your computer to display the image.
- 2. **Display the Landscape**. This example will use the fuel layer, but the process could be used to overlay any of the landscape themes. Simply choose to display the desired lcp them in the FLAMMAP window before continuing the process.
 - ✓ Open FLAMMAP and open the landscape just downloaded for display
 - ✓ Right-click on the displayed theme and select "full screen" from the menu that appears. It is important that the full extent is displayed to match the coordinates captured from WFDSS in step 1.
- 3. **Save Display as a TIFF file.** Right-click on the displayed theme again, this time choosing "Save as" and saving the file after selecting TIFF (*.TIF, *.TIFF) as the "Save as type".
- 4. Crop image to exclude white space on right side of image.
 - ✓ Open the TIFF in an image editor, such as Microsoft Office Picture Manager.
 - ✓ Clip out the white area to the right. Crop it as close as you can without clipping any of the fuel model image. You may have to zoom in or crop it twice to be precise.

5. Add TIFF to Google Earth as an Image Overlay.

Figure 7.5.4-2 Google Earth New Image Overlay screen

- ✓ Open Google Earth.
- ✓ From the top line menu, select "Add" and choose "image overlay".
- ✓ The dialog box to the right provides the opportunity to name the overlay
- Click on the "Browse..." button and Navigate to the saved TIFF file and open it.
- ✓ Slide the transparency slider bar to the middle of the range to allow the base Google Earth imagery to show through the overlay TIFF image.
- ✓ Click on the "Location" tab and enter the WFDSS coordinates captured earlier (North is "Top Latitude" | West is "Left Longitude" | etc.). Click "OK" when completed.

The image should now be displayed correctly. If you want to readjust the transparency, click on the image beneath "Places" (on the left), right-click, and select "Properties."



8 CCFDRS

8.1 CFFDRS System Overview

This guide is intended as a reference for US users who may have reason to work with the system in the United States, where English units are primarily used. Keep in mind that the Canadian Forest Service has produced the definitive selection of reference publications and tools.

The Canadian Forest Fire
Danger Rating System (CFFDRS)
was first conceived in 1968. The
Fire Weather Index (FWI)
system was the first developed
and introduced across Canada
in 1970. The Fire Behavior
Prediction (FBP) system was
first released in 1984. The Fire
Occurrence Prediction (FOP)
system and Accessory Fuel
Moisture system are still in
development, with several
regional modules operational at
this time.

8. CCFDRS (Final June 17, 2014)

Though this guide attempts to be faithful to the models embedded in CFFDRS, there are a number of adaptations to the standard depictions found in materials produced by the Canadian Forest Service.

Users are advised to review these important adaptations and to consider reviewing the source documentation from the Canadian Forestry Service to compare this guide with original intent.

- Most important among these is the use of English units instead of the standard metric units employed in the system internationally.
- CFFBP models and tools do not expressly identify the relationship between standard wind measurements (10 meters sensor height) used and field measurements at eye level. In this guide, the relationship is featured in the ISI/BISI (sections 8.2.5 and 8.2.6) tables and the area/perimeter tables in 8.3.18 and 8.3.19. The relationship between "airport", "forestry" and winds measured at other heights (e.g. 2m for eye level) is taken from Lawson & Armitage (2008). Relationship between 10-m and 20-ft winds is provided in table in section 8.3. Each user is encouraged to interpret the winds as measured and apply them appropriately for the model used.
- A major adaptation with uncertain validity is the use of flame length for fire intensity outputs in the fire behavior tables. FBP outputs (kW/m) were converted to BTU/ft/sec and then to flame length using the formula:

 $Flame\ Length = .45 * "BTU/Ft/Sec"^.46$

The table below identifies the CFFBP Fire intensity thresholds in kW/m and the corresponding values in English units and flame length in feet. These thresholds are consistent with commonly held flame length thresholds for fire safety interpretations.

			Flame
	Fire In	tensity	Length
k	:W/m	BTU/ft/sec	Feet
	10	3	1
	500	145	4
2	2000	578	8
4	4000	1156	12
1	.0000	2891	18

Table 8.1-1 Fire intensity and flame length

Most of these references, resources, and tools can be found at http://www.frames.gov/cffdrs .

8.1.1 Key References & Training Resources

Lawson, B.D.; Armitage, O.B. 2008. Weather guide for the Canadian Forest Fire Danger Rating System. Nat. Resour. Can., Can. For. Serv., North. For. Cent., Edmonton, AB.

Van Wagner, C.E. 1987. <u>Development and structure of the Canadian Forest Fire Weather Index System</u>.

Canadian Forest Service, Ottawa, Ont. Forest Technical Report 35.

Taylor, Steve, Lawson, Bruce, and Sherman, Karen.

Introduction to the Canadian Forest Fire Weather Index
System, online video. Canadian Forest Service. 22 min.

<u>Understanding the Fire Weather Index System Interactive</u> <u>Training and Reference, CD</u>

Forestry Canada Fire Danger Group. 1992. <u>Development and structure of the Canadian Forest Fire Behavior Prediction System</u>. Information Report ST-X-3. Ottawa, Ontario, Canada: Forestry Canada, Science and Sustainable Development Directorate. 63 p.

Hirsch, K.G. 1996. Canadian Forest Fire Behavior Prediction (FBP) System User's Guide. Natural Resources Canada, Canadian Forest Service, Northern Forestry Centre Special Report 7. Edmonton, Alberta.

De Groot, W.J., 1993, <u>Examples of Fuel Types in the</u>
<u>Canadian Forest Fire Behavior Prediction (FBP) System,</u>
Forestry Canada. Poster.

<u>Canadian Forest Fire Behavior Prediction System</u> <u>Interactive Training and Reference, CD,</u>

Tymstra, C.; Bryce, R.W.; Wotton, B.M.; Taylor, S.W.; Armitage, O.B. 2010. <u>Development and structure of Prometheus: the Canadian Wildland Fire Growth Simulation Model</u>. Nat. Resour. Can., Can. For. Serv., North. For. Cent., Edmonton, AB. Inf. Rep. NOR-X-417

Wotton, B.M.; Alexander, M.E.; Taylor, S.W. 2009. <u>Updates and Revisions to the 1992 Canadian Forest Fire Behavior Prediction System</u>. Natural Resources Canada, Canadian Forest Service, Great Lakes Forestry Centre, Sault Ste. Marie, Ontario, Canada. Information Report GLC-X-10, 45p.

8.1.2 Operational Tools

Canadian Forestry Service. 1984. <u>Tables for the Canadian Forest Fire Weather Index System</u>. Environment Canada, Canadian Forestry Service, Forest Technical Report 25.

Taylor, S.W., Pike, R.G., Alexander, M.E. 1997. Field Guide to the Canadian Forest Fire Behavior Prediction (FBP)

System. Fire Management Network, Canadian Forest Service, Northern Forestry Centre. Special Report 11.

Kidnie, S.M., Wotton, M.M., Droog, W.N. 2010. Field Guide for Predicting Fire Behaviour in Ontario's Tallgrass Prairie.

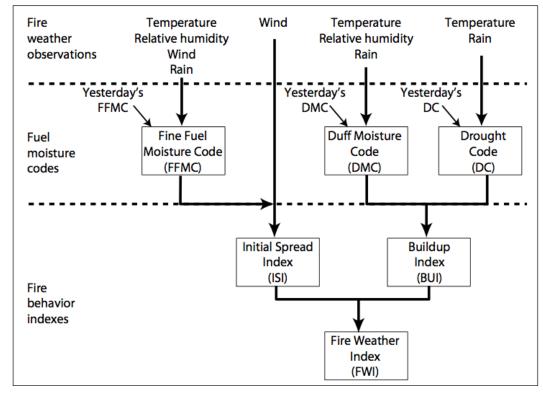
RunCFFDRS.exe is a stand-alone executable file produced by the Canadian Forest Service that includes documentation and references for the entire system as well as basic calculators for the FWI and FBP systems.

<u>Prometheus</u>, the CFFDRS Geospatial Fire Growth Model, is supported by the Canadian Interagency Forest Fire Center(CIFFC) and its members. It includes a separate FWI/FBP calculator as part of its installation.

8.2 Fire Weather Index (FWI) System

8.2.1 System Overview and Structure

Analogous in concept to the National Fire Danger Rating System (NFDRS), the Fire Weather Index System depends solely on weather readings.


CFFDRS calculates FWI codes and indices based on a single "standard" fuel type that can be described as a generalized pine forest, most nearly jack pine and lodgepole pine.

Daily FWI weather inputs are collected at 1200 LST, with the calculated codes and indices intended to represent conditions at peak afternoon conditions.

Figure 8.2.1-1 Fire Weather Index System overview

There are three (3) fuel moisture codes calculated from these basic weather observations. Unlike the NFDRS fuel moistures, the FWI fuel moisture codes increase as fuels get drier. Like other accounting systems, the FWI system combines knowledge of vesterday's (or last hour's) fuel moisture conditions with the influence of air temperature, atmospheric moisture, wind, and precipitation since then.

 The Fine Fuel Moisture Code (FFMC) represents fuel moisture of forest litter

fuels under the shade of a forest canopy. It is intended to represent moisture conditions for the equivalent of 16-hour timelag fuels. It ranges from 0-101. Subtracting the FFMC value from 100 can provide an estimate for the equivalent fuel moisture content, generally at the upper end when FFMC values are roughly above 80.

- The *Duff Moisture Code (DMC)* represents fuel moisture of decomposed organic material underneath the litter. System designers suggest that it is represents moisture conditions for the equivalent of 15-day (or 360 hr) timelag fuels. It is unitless and open ended. It may provide insight to live fuel moisture stress.
- The *Drought Code (DC)*, much like the Keetch-Byrum Drought Index, represents drying deep into the soil. It approximates moisture conditions for the equivalent of 53-day (1272 hour) timelag fuels. It is unitless, with a maximum value of 1000. Extreme drought conditions in the Eastern Upper Peninsula have produced DC values near 650.

Similarly, there are three (3) *fire behavior indices* intended to represent spread, fuel consumption/heat release, and fire intensity.

- The *Initial Spread Index (ISI)* is analogous to the NFDRS Spread Component (SC). It integrates fuel moisture for fine dead fuels and surface windspeed to estimate a spread potential. It is unitless and open ended.
- The Buildup Index (BUI) is analogous to the NFDRS Energy Release Component (ERC). It combines the
 current DMC and DC to produce an estimate of potential heat release in heavier fuels. It is unitless and
 open ended.
- The *Fire Weather Index (FWI)* integrates current ISI and BUI to produce a unitless index of general fire intensity potential. Again, unitless and open ended. It is analogous to NFDRS Burning Index (BI).

8.2.2 Obtaining Fire Weather Index (FWI) Inputs

Fire Weather Index (FWI) Fine Fuel Moisture Code (FFMC), Initial Spread Index (ISI) and Buildup Index (BUI) are used as direct inputs to the Canadian Forest Fire Behavior Prediction (CFFBP) system. Because daily FWI codes and indices are calculated using standardized weather observations, collected consistently at fixed locations each day at 1200 Local Standard Time, they may not accurately reflect current conditions and the resulting fire behavior. However, in most cases, these daily values are starting points for local assessments.

Rather than provide detail on how to calculate these daily values, it makes more sense to identify ways to obtain current and forecast values from RAWS weather records and then to make adjustments for onsite conditions:

Sources of FWI Codes and Indices

In Alaska and in the Lake States, CFFDRS has been implemented for fire management users. A variety of weather and CFFDRS records are available publicly at the following locations:

- Alaska Interagency Coordination Center <u>Fire</u>
 <u>Weather</u> & <u>Fuels/Fire Danger</u> records are
 available at http://fire.ak.blm.gov/aicc.php.
- Michigan, Minnesota, and Wisconsin CFFDRS records can be found at http://glffc.utah.edu/.

If there is interest in calculating CFFDRS outputs in other areas, the user could consider obtaining weather records from appropriate RAWS or other data source and importing them into Firefamily Plus, where daily FWI codes and indices can be calculated, displayed and exported.

Adjusting FWI Outputs for local conditions

- Adjust FFMC for each location and time period of interest using Slope Adjustments in section 8.2.3 and Diurnal Adjustment in section 8.2.4. Tables and slope. Diurnal adjustments should be completed first.
- Using a moisture probe to evaluate 10 hr fuels in the field may provide an effective estimate for current FFMC. Simply subtract the estimated fuel moisture from 100 to derive current FFMC.
- Adjust Initial Spread Index (ISI) for current conditions by using adjusted FFMC and current windspeed observation from the field using the table in section 8.2.5 for ISI and 8.2.6 for backing ISI
- The Fire Weather Index (FWI) itself is highly dependent on windspeed and may also be adjusted, using the table in section 8.2.7.

Estimating Windspeed for CFFDRS Calculations

CFFDRS uses standard fire weather observations collected at 10 meters above prevailing cover. The following table, from the Field Guide for Predicting Fire Behavior in Ontario's Tallgrass Prairie (Kidnie et.al.2010), provides a means for converting the wind measurement or predictions to the "Forestry 10m winds" used in CFFDRS calculations.

Table 8.2.2-1 Windspeed adjustments by height

Forestry		Н	eight	of w	ind n	neasu	ireme	ent (n	n)		Airport
10 m winds (km/h)	1	2	3	4	5	6	7	8	9	10	10 m winds (km/h)
1	1	1	1	1	1	1	1	1	1	1	2
2	1	2	2	2	2	2	2	2	2	2	3
3	2	2	2	3	3	3	3	3	3	3	5
4	3	3	3	3	4	4	4	4	4	4	7
5	3	4	4	4	5	5	5	5	5	5	8
6	4	5	5	5	5	5	6	6	6	6	10
7	5	5	6	6	6	6	7	7	7	7	12
8	5	6	7	7	7	7	8	8	8	8	13
9	6	7	7	8	8	8	9	9	9	9	15
10	7	8	8	9	9	9	10	10	10	10	17
12	8	9	10	10	11	11	12	12	12	12	20
14	9	11	11	12	13	13	14	14	14	14	23
16	11	12	13	14	15	15	16	16	16	16	27
18	12	14	15	16	16	16	17	17	18	18	30
20	14	15	16	17	18	18	19	19	20	20	33
25	17	19	20	22	23	23	24	24	25	25	42
30	20	23	25	26	27	27	29	29	30	30	50
35	24	27	29	30	32	32	34	34	35	35	58
40	27	31	33	34	36	36	39	39	40	40	67
45	30	34	37	39	41	41	44	44	45	45	75
50	34	38	41	43	45	45	49	49	50	50	83

Eye level winds could be compared to those from the 2 m Height of wind measurement column. In the same way, winds recorded at airports and very large openings can be represented by the Airport 10m winds column on the right. Either can be converted by following the row to the left and reading the value in the "Forestry" column.

8.2.3 Slope Adjustments Slope Equivalent windspeeds

Table 8.2.3-1 Slope equivalent windspeeds

				Slop	e, %		
F	uel Type	10	20	30	40	50	60
	C-1	1	2	3	4	5	6
	C-2	2	5	7	11	14	18
	C-3	1	2	4	5	7	9
	C-4	2	5	7	11	14	18
	C-5	1	2	3	4	6	7
	C-6	1	3	4	6	8	10
	C-7	1	3	6	8	11	13
	D-1	2	4	7	10	13	16
	M-1	3	6	9	12	16	20
	M-2	2	5	8	11	14	18
R/I	30%DF	2	4	7	10	13	16
M 3	60%DF	2	5	8	11	15	20
3	100%DF	2	6	9	13	18	25
М	30%DF	1	3	5	7	9	11
4	60%DF	1	4	6	8	11	14
_	100%DF	2	5	8	11	16	20
	S-1	2	5	9	12	17	22
	S-2	2	4	7	10	13	17
	S-3	1	2	4	6	8	10
	O-1 a	2	5	8	11	15	20
	O-1b	2	4	7	10	13	16

Find the fuel type identifier, and then move horizontally to the most appropriate slope column to read the **slope equivalent** windspeed. If the FFMC is \geq 95 and slope is \geq 50%, add 3 mph to the table value.

Slope equivalent windspeed varies with FFMC. Those given above are for FFMC 90 and are accurate to \pm 1-2 mph of the true value for FFMC 90-96. The values for FFMC \geq 95 and slope \geq 50% may be underestimated by \geq 3 mph.

M-1 and M-2 values are for 50:50 conifer/hardwood mixture. M-3 and M-4 modifiers are percent dead fir (%DF).

FFMC Slope-Aspect Adjustments

Table 8.2.3-2 Slope equivalent windspeeds

FFMC		1-1	5%			16-3	30%			31-4	15%			46-6	60%	
Flat	N	Е	S	W	N	Е	S	W	N	Е	S	W	N	Е	S	W
80	78	79	82	80	77	78	82	80	74	77	83	81	72	76	84	81
82	80	81	84	82	79	80	84	82	76	79	85	83	74	78	85	83
84	83	83	85	84	81	82	86	84	79	81	87	84	76	80	88	84
86	85	85	87	86	83	84	88	86	81	83	89	86	78	82	90	86
87	86	86	88	87	84	85	89	87	82	84	90	87	80	83	90	87
88	87	87	89	88	85	87	90	88	83	86	91	88	82	85	91	88
89	88	88	90	89	87	88	91	89	85	87	91	89	83	86	92	89
90	89	89	91	90	88	89	92	90	86	88	92	90	84	87	93	90
91	90	90	92	91	89	90	92	91	87	89	93	91	86	88	93	91
92	91	91	93	92	90	91	93	92	88	90	94	92	87	89	94	92
93	92	92	94	93	91	92	94	93	89	91	95	93	88	90	95	93
94	93	93	95	94	92	93	95	94	91	92	96	94	90	92	96	94

Determine the slope and aspect of the area you are projecting spread in, find the FFMC, then move horizontally to the column that best describes the prediction point and read adjusted FFMC. These adjustments should be used with caution as they have not been rigorously tested. They should only be applied in slash and open fuel types on clear days in March, April, August, September, or October between 1200 and 2000 LST.

8.2.4 Diurnal FFMC Adjustments

Table 8.2.4-1 Diurnal FFMC 1300-0659

DIURNAL FFMC ADJUSTMENTS FOR 1300-0659 DAYLIGHT SAVINGS TIME

Lo	Ti	Daylig me day	ht	STD FFM C		Loca	l Day Too	light day	Time					I Day Tomo		Time		
130	140	150	160	4700	180	190	200	210	220	230	000	010	020	030	040	050	060	065
0	0	0	0	1700	0	0	0	0	0	0	0	0	0	0	0	0	0	9
41	43	46	48	50	51	52	53	53	52	51	50	49	48	47	46	45	44	43
48	52	55	57	60	61	62	62	62	61	59	58	56	55	54	52	51	50	49
53	56	60	62	65	66	67	66	66	64	63	61	60	58	57	56	54	53	55
57	61	65	68	70	70	71	70	69	68	66	65	63	62	60	59	58	56	57
63	67	71	73	75	75	75	74	73	72	70	69	67	66	64	63	61	60	58
64	68	72	74	76	76	76	75	74	72	71	69	68	66	65	64	62	61	59
66	69	73	75	77	77	77	76	75	73	72	70	69	67	66	64	63	62	60
67	71	75	76	78	78	78	77	76	74	72	71	69	68	67	65	64	63	61
69	72	76	78	79	79	78	77	76	75	73	72	70	69	67	66	65	63	62
71	74	77	79	80	80	79	78	77	76	74	73	71	70	68	67	66	64	63
74	76	79	80	81	81	80	79	78	77	75	73	72	71	69	68	66	65	64
76	78	80	81	82	82	81	80	79	77	76	74	73	71	70	69	67	66	65
78	80	81	82	83	83	82	81	80	78	77	75	74	72	71	70	68	67	66
80	81	82	83	84	84	83	82	81	79	78	76	75	73	72	70	69	68	67
82	82	83	84	85	85	84	83	82	80	79	77	76	74	73	71	70	69	68
83	84	85	85	86	86	85	84	83	81	79	78	77	75	74	72	71	70	68
84	85	86	86	87	87	86	85	83	82	80	79	78	76	75	73	72	71	70
85	86	87	87	88	88	87	86	84	83	81	80	79	77	76	74	73	72	71
86	87	88	89	89	89	88	87	85	84	82	81	80	78	77	75	74	73	72
88	88	89	90	90	90	89	88	86	85	83	82	81	79	78	77	75	74	73
89	89	90	91	91	91	90	89	87	86	84	83	82	80	79	78	76	75	74
90	90	91	92	92	92	91	90	88	87	85	84	83	81	80	79	77	76	75
91	91	92	93	93	93	92	91	89	88	86	85	84	82	81	80	79	77	76
92	93	93	94	94	94	93	92	90	89	88	86	85	84	82	81	80	79	77
93	94	94	95	95	95	94	93	91	90	89	87	86	85	83	82	81	80	79
94	95	95	96	96	96	95	94	92	91	90	88	87	86	85	84	82	81	80
95	96	96	97	97	97	96	95	93	92	91	90	88	87	86	85	84	83	81
96	97	97	98	98	98	97	96	94	93	92	91	90	88	87	86	85	84	83
97	98	98	99	99	99	98	97	95	94	93	92	91	90	88	87	86	85	84
98	99	99	100	100	100	99	98	96	95	94	93	92	91	90	89	88	86	85
130	140	150	160	1700	180	190	200	210	220	230	240	010	020	030	040	050	060	065
0	0	0	0	1700	0	0	0	0	0	0	0	0	0	0	0	0	0	9

DIURNAL FFMC ADJUSTMENT TABLE FOR 0700-1259 LOCAL DAYLIGHT SAVINGS TIME

Table 8.2.

	D				Yeste	erday	's S	Sta	nda	ırd	Fin	e F	ue	I M	ois	tur	e C	od	e (I	FFN	VIC))					
Hour LDT	RH %	45- 54	58- 62	63- 67	68- 72	73- 75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96
	<68	54	57	59	62	65	66	66	67	68	69	69	70	71	72	73	74	75	76	78	79	80	81	83	84	86	87
700	68- 87	48	53	55	58	62	63	63	64	65	66	66	67	68	69	70	71	72	73	74	75	76	77	78	80	81	82
	>87	43	49	52	55	59	60	60	61	62	63	64	65	66	67	67	68	69	71	72	73	74	75	76	77	79	80
	<58	56	60	62	64	67	68	69	69	70	71	72	72	73	74	75	76	77	78	79	80	81	83	84	85	87	88
800	58- 77	49	54	57	60	63	64	65	66	67	67	68	69	70	71	72	73	74	75	76	77	78	79	81	82	83	84
	>77	44	49	53	56	60	60	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	77	78	79	81	82
	<48	59	63	65	67	70	70	71	72	72	73	74	75	75	76	77	78	79	80	81	82	83	84	85	86	88	89
900	48- 67	50	55	58	61	65	66	67	68	68	69	70	71	72	73	74	75	76	77	78	79	81	82	83	84	85	87
	>67	45	50	53	57	61																				82	
	<43	64	67	69	71	74	74	75	75	76	77	77	78	79	80	80	81	82	83	84	85	86	87	88	89	90	91
1000	43- 62	56	60	63	66	69	70	71	72	72	73	74	75	76	77	77	78	79	80	81	82	83	85	86	87	88	89
	>62	51	56	58	62	65																				84	
	<38	70	72	74	76	78	78	79	79	80	81	81	82	82	83	84	85	85	86	87	88	89	90	91	92	93	94
1100	38- 57	62	66	68	71	74	75	75	76	77	77	78	79	79	80	81	82	83	84	85	86	87	88	89	90	91	92
	>57	57	61	64	67	70	70	71	72	72	73	74	74	75	76	77	77	78	79	80	81	82	83	84	85	86	87
	<35.5	76	78	79	80	82	83	84	84	85	85	86	86	87	87	88	89	89	90	90	91	91	92	92	93	93	94
1200	35- 54	69	72	74	76	79	80	80	81	82	82	83	83	84	85	85	86	87	87	88	88	89	89	90	91	91	92
	>54.5	64	68	70	72	75																				86	
	<33	82	83	84	85	87	87	88	88	88	89	89	89	90	90	90	91	91	91	92	92	92	92	93	93	93	94
1259	33- 52	77	79	81	82	84	84	85	85	86	86	86	87	87	88	88	88	89	89	89	90	90	90	91	91	91	92
	>52	72	75	77	78	80	81	81	81	82	82	82	83	83	83	83	84	84	84	85	85	85	86	86	86	86	87

If Onsite weather is not consistent with that used to determine daily FWI codes & indices, or if weather changes significantly after daily observation, onsite measurement of 10 hour fuel moisture may be used as a reference to current FFMC. This table represents a comparison between calculated daily FFMC and manual NFDRS fuel stick weights from 7 NFDRS manual recording stations from Michigan prior to RAWS establishment.

Table 8.2.4-3 FFMC from 10-hr fuel moisture measurement

10 Hr	5	6	7	8	9	10	11	12	13	14
FFMC	96	94	93	91	90	88	87	86	84	83

8.2.5 Initial Spread Index (ISI)

Table 8.2.5-1 Initial Spread Index

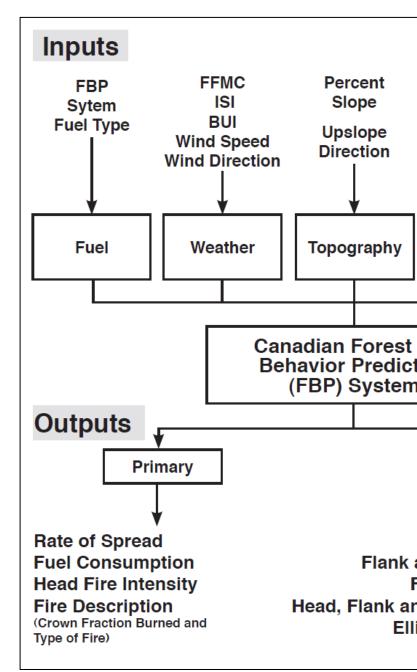
					F		tive \	Nind	Snee	d (in	mile	s ner	hou	r)					
					_		. Ope		•	•		•		• /					
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
1	1	2	3	3	4	5	5	6	7	7	8	9	9	10	11	11	12	13	13
8.0	0.9	1	1.1	1.1	1.2	1.4	1.5	1.6	1.7	1.9	2	2.2	2.4	2.6	2.8	3	3.3	3.6	3.9
0.9	1	1	1.1	1.2	1.3	1.4	1.6	1.7	1.8	2	2.2	2.3	2.5	2.7	3	3.2	3.5	3.8	4
0.9	1	1.1	1.2	1.3	1.4	1.5	1.7	1.8	2	2.1	2.3	2.5	2.7	2.9	3.2	3.5	3.7	4	4
1	1.1	1.2	1.3	1.4	1.5	1.7	1.8	2	2.1	2.3	2.5	2.7	2.9	3.2	3.4	3.7	4	4	5
1.1	1.2	1.3	1.4	1.5	1.7	1.8	2	2.1	2.3	2.5	2.7	3	3.2	3.5	3.8	4	4	5	5
1.2	1.3	1.5	1.6	1.7	1.8	2	2.2	2.4	2.6	2.8	3	3.3	3.5	3.8	4	5	5	5	6
1.4	1.5	1.6	1.8	1.9	2.1	2.2	2.4	2.6	2.9	3.1	3.4	3.6	3.9	4	5	5	6	6	6
1.5	1.7	1.8	2	2.1	2.3	2.5	2.7	3	3.2	3.5	3.8	4	4	5	5	6	6	7	7
1.8	1.9	2.1	2.2	2.4	2.6	2.8	3.1	3.4	3.6	3.9	4	5	5	5	6	6	7	8	8
2	2.2	2.3	2.5	2.8	3	3.2	3.5	3.8	4	5	5	5	6	6	7	7	8	9	9
2.3	2.5	2.7	2.9	3.2	3.4	3.7	4	4	5	5	6	6	7	7	8	8	9	10	11
2.6	2.8	3.1	3.3	3.6	3.9	4	5	5	5	6	6	7	8	8	9	10	10	11	12
3	3.3	3.6	3.9	4	5	5	5	6	6	7	7	8	9	9	10	11	12	13	14
3.5	3.8	4	5	5	5	6	6	7	7	8	9	9	10	11	12	13	14	15	16
4	4	5	5	6	6	7	7	8	8	9	10	11	12	13	14	15	16	17	19
5	5	6	6	6	7	8	8	9	10	11	11	12	13	15	16	17	19	20	22
5	6	6	7	7	8	9	10	10	11	12	13	14	15	17	18	20	21	23	25
6	7	7	8	9	9	10	11	12	13	14	15	16	18	19	21	23	25	27	29
7	8	8	9	10	11	12	13	14	15	16	17	19	20	22	24	26	28	31	33
8	9	10	10	11	12	13	14	16	17	18	20	22	24	26	28	30	33	35	38
9	10	11	12	13	14	15	17	18	20	21	23	25	27	29	32	34	37	40	44
11	12	13	14	15	16	18	19	21	22	24	26	29	31	34	36	39	43	46	50

8.2.6 Backing Initial Spread Index (BISI)

Table 8.2.6-1 Backing Initial Spread Index

Iabi	e 8.2.0	2-T D	ackiii																		
BI	SI			Ef				Vin		•		`			•)			
	<u> </u>			•	Ε)pe	n i	n a	t E	ye	Le								•	
10 M		1	2	3	4	5	6	7	8	9	10	11							18		
EL C	•	1	1	2	3	3	4	5	5	6	7	7	8	9	9		11		12		
		0.7																			
	76	0.7	0.7	0.6	0.6	0.5	0.5	0.5	0.4	0.4	0.4	0.3	0.3	0.3	0.3	0.2	0.2	0.2	0.2	0.2	0.2
	77	0.8																			
	78	0.9	8.0	0.7	0.7	0.6	0.6	0.5	0.5	0.5	0.4	0.4	0.4	0.3	0.3	0.3	0.3	0.2	0.2	0.2	0.2
င	79	1	0.9	8.0	0.7	0.7	0.6	0.6	0.5	0.5	0.5	0.4	0.4	0.4	0.3	0.3	0.3	0.3	0.2	0.2	0.2
(FFMC)	80	1	1	0.9	8.0	8.0	0.7	0.6	0.6	0.6	0.5	0.5	0.4	0.4	0.4	0.3	0.3	0.3	0.3	0.2	0.2
(F	81	1.2	1.1	1	0.9	8.0	8.0	0.7	0.7	0.6	0.6	0.5	0.5	0.4	0.4	0.4	0.3	0.3	0.3	0.3	0.3
CODE	82	1.3	1.2	1.1	1	1	0.9	8.0	0.7	0.7	0.6	0.6	0.5	0.5	0.5	0.4	0.4	0.4	0.3	0.3	0.3
Ö	83	1.5	1.4	1.3	1.2	1.1	1	0.9	8.0	0.8	0.7	0.7	0.6	0.6	0.5	0.5	0.4	0.4	0.4	0.3	0.3
	84	1.7	1.6	1.4	1.3	1.2	1.1	1	1	0.9	0.8	0.8	0.7	0.6	0.6	0.5	0.5	0.5	0.4	0.4	0.4
IRE	85	1.9	1.8	1.7	1.5	1.4	1.3	1.2	1.1	1	0.9	0.9	0.8	0.7	0.7	0.6	0.6	0.5	0.5	0.5	0.4
MOISTURE	86	2.2	2.1	1.9	1.8	1.6	1.5	1.4	1.3	1.2	1.1	1	0.9	0.8	0.8	0.7	0.7	0.6	0.6	0.5	0.5
SIC	87	2.6	2.4	2.2	2	1.9	1.7	1.6	1.5	1.4	1.2	1.1	1.1	1	0.9	0.8	0.8	0.7	0.7	0.6	0.6
Ĕ	88	3	2.7	2.5	2.3	2.2	2	1.8	1.7	1.6	1.4	1.3	1.2	1.1	1	1	0.9	0.8	0.8	0.7	0.6
FUEL	89	3.4	3.2	2.9	2.7	2.5	2.3	2.1	1.9	1.8	1.7	1.5	1.4	1.3	1.2	1.1	1	0.9	0.9	0.8	0.7
FU	90	4	3.6	3.4	3.1	2.9	2.6	2.4	2.2	2.1	1.9	1.8	1.6	1.5	1.4	1.3	1.2	1.1	1	0.9	0.9
빌	91	5	4	3.9	3.6	3.3	3	2.8	2.6	2.4	2.2	2	1.9	1.7	1.6	1.5	1.4	1.3	1.2	1.1	1
FINE	92	5	5	5	4	3.8	3.5	3.2	3	2.8	2.5	2.3	2.2	2	1.8	1.7	1.6	1.4	1.3	1.2	1.1
	93	6	6	5	5	4	4	3.7	3.4	3.2	2.9	2.7	2.5	2.3	2.1	2	1.8	1.7	1.5	1.4	1.3
	94	7	6	6	6	5	5	4													1.5
	95	8	7	7	6	6	5	5	5										2		
	96	9	8	8	7	7	6	6	5	5	4						 		2.3		

8.2.7 Fire Weather Index (FWI)


_,	A //I											BU	ILD		IND		(Bl	JI)									
F۱	/VI	1	5	8- 12	13- 17	18- 22	23- 27	28- 32	33- 37	38- 42	43- 37	48- 52	53- 57	58- 62	63- 67	68- 72	73- 77	78- 84	85- 94	95- 104	105- 114	115- 124	125- 134	135- 144	145- 154	155- 164	165- 174
	1	0	0	1	1	1	1	2	2	2	3	3	3	3	4	4	4	4	5	5	5	6	6	6	6	6	7
	2	1	1	2	3	3	4	4	5	5	6	6	6	7	7	8	8	8	9	10	10	11	11	11	12	12	12
	3	1	2	3	4	5	6	6	7	8	8	9	9	10	10	11	11	12	12	13	14	15	15	15	16	16	16
	4	1	3	4	6	7	7	8	9	10	10	11	12	12	13	14	14	15	16	17	17	18	19	19	20	20	20
	5	2	4	5	7	8	9	10	11	12	13	13	14	15	15	16	17	17	18	19	20	21	22	22	23	23	24
	6	3	5	7	8	9	11	12	13	14	14	15	16	17	18	18	19	20	21	22	23	24	25	26	26	27	27
	7	3	5	7	9	11	12	13	14	15	16	17	18	19	20	21	21	22	23	25	26	27	28	28	29	30	30
	8	4	6	8	10	12	13	15	16	17	18	19	20	21	22	23	23	24	26	27	28	29	30	31	32	32	33
	9	4	7	9	11	13	15	16	17	18	20	21	22	23	24	25	25	26	28	29	31	32	33	34	34	35	35
	10	5	8	10	12	14	16	17	19	20	21	22	23	24	25	26	27	28	30	32	33	34	35	36	37	37	38
(15	11	5	8	11	13	15	17	18	20	21	23	24	25	26	27	28	29	30	32	34	35	36	37	38	39	40	40
EX	12	6	9	12	14	16	18	20	21	23	24	25	27	28	29	30	31	32	34	36	37	38	40	41	41	42	43
NDE	13	6	10	13	15	17	19	21	22	24	25	27	28	29	30	32	33	34	36	38	39	41	42	43	44	44	45
	14	7	10	13	16	18	20	22	24	25	27	28	30	31	32	33	34	35	37	39	41	43	44	45	46	46	47
AD	15	7	11	14	17	19	21	23	25	27	28	30	31	32	34	35	36	37	39	41	43	44	46	47	48	48	49
ш	16	7	11	15	18	20	22	24	26	28	29	31	32	34	35	36	37	39	41	43	45	46	48	49	50	50	51
SPR	17	8	12	16	18	21	23	25	27	29	31	32	34	35	36	38	39	40	42	45	46	48	49	51	52	52	53
_	18	8	12	16	19	22	24	26	28	30	32	33	35	36	38	39	40	42	44	46	48	50	51	52	53	54	55
₹	19	9	13	17	20	23	25	27	29	31	33	35	36	38	39	41	42	43	46	48	50	52	53	54	55	56	57
INITIA	20	9	14	18	21	23	26	28	30	32	34	36	37	39	40	42	43	45	47	49	51	53	55	56	57	58	59
_	21	9	14	18	21	24	27	29	31	33	35	37	39	40	42	43	45	46	49	51	53	55	56	58	59	60	60
	22	10	15	19	22	25	28	30	32	34	36	38	40	41	43	45	46	47	50	52	55	56	58	59	61	61	62
	23	10	15	19	23	26	29	31	33	35	37	39	41	43	44	46	47	49	51	54	56	58	60	61	62	63	64
	24	11	16	20	24	27	29	32	34	36	38	40	42	44	45	47	49	50	53	55	58	60	61	63	64	65	66
	25	11	16	21	24	27	30	33	35	37	39	41	43	45	47	48	50	51	54	57	59	61	63	64	65	66	67
	26	11	17	21	25	28	31	34	36	38	40	42	44	46	48	49	51	53	56	58	60	63	64	66	67	68	69
	27	12	17	22	26	29	32	35	37	39	41	43	45	47	49	51	52	54	57	60	62	64	66	67	68	70	70
	28	12	17	22	26	30	33	35	38	40	42	44	46	48	50	52	53	55	58	61	63	65	67	69	70	71	72
	29	12	18	23	27	30	33	36	39	41	43	45	47	49	51	53	55	56	59	62	65	67	69	70	71	73	73
	30	13	18	23	28	31	34	37	40	42	44	46	48	50	52	54	56	57	61	63	66	68	70	72	73	74	75

8.3 Fire Behavior Prediction (FBP) System

8.3.1 FBP System Overview and Structure

Though the basic categories of inputs to the system are similar to the US system of fire behavior models and tools, there are several important differences.

- Each CFFBP Fuel Type integrates the surface and canopy fuel characteristics, providing for evaluation of crown fire initiation and propagation without additional canopy characterizations. Only Foliar Moisture Content can be provided by the analyst
- Basic environmental inputs are produced by the Fire Weather Index (FWI) system. Fine Fuel Moisture Code (FFMC) estimates, both daily and hourly values, are estimated using FWI processes and combined with open 10 meter windspeeds to determine the Initial Spread Index (ISI), one of the key inputs. Buildup Index (BUI) is used to evaluate overall consumption and its contribution to spread and intensity estimates for all but the open fuels.
- Foliar Moisture content can be modeled according to phenology. assiccial additionities to phenology. assiccial additional and the modeled according to phenology.

8.3.2 Instructions for Estimating FBP Outputs

Once you have obtained current and/or forecasted FWI outputs (FFMC, ISI, BISI, BUI), fire behavior outputs may be determined using the following information and the fuel type specific tables on the following pages.

FUEL TYPE: Select appropriate fuel type(s) (Section 8.3.3)

SPREAD DIRECTION: Select one or more of the following: (H)eadfire, (F)lanking fire, and (B)acking fire

RATE OF SPREAD & FLAME LENGTH

- Select appropriate Initial Spread Index; ISI for head fire or BISI for backing fire
- Select appropriate Fuel Type specific table(s). (Sections 8.3.4-17)
- To determine expected Headfire Rate of Spread and flame length, use current ISI and BUI and appropriate fuel model table from section 8.3.4-17. Similarly, backing fire behavior uses BISI and BUI with the appropriate table from section 8.3.4-17. Interpolate if necessary.
- Flanking Spread rate = (ROS + BROS)/(L:W ratio X 2).
 Length:Width Ratio found in table to the right.

TYPE OF FIRE

(Surface, Torching or Intermittent, Active Crown)

Fire Behavior tables for Conifer (C) and Mixedwood (M) fuels from section 8.3.4-17 include shading and font colors that represent fire type. *Torching* is determined by comparing surface flame length to the threshold flame length for each fuel.

Fuel Type	Torching Threshold
	(Flame Length)
C-1	4.8 ft
C-2	6.4 ft
C-3	12.6 ft
C-4	7.8 ft
C-5	22 ft
C-6	11.5 ft
C-7	14.7 ft
M	10.3 ft

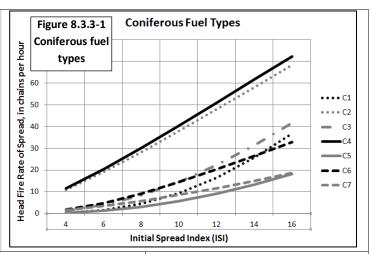
Table 8.3.2-1
Torching threshold
by fuel type

AREA & PERIMETER (from point source)

- Determine total spread distance (combine headfire and backing spread) for elapsed time from ignition.
- Select appropriate table; 8.3.18 for Sheltered fuels (C, M, D, or S) or 8.3.19 for Open Fuels(O-1a or O-1b)

TabReferênênênên sharers riva terindişnelsebeed and spread distance

Airport		estry	ष्ट ार्थक्षेप्तदे ष्ट्र्णeed an Open	Fire Sh	
Winds	W	inds	Eye Level	Length:	Width
mph	m	ıph	Winds	Rat	io
10m	10m	20ft	mph	Unshelt.	Shelt.
1.0	0.6	0.5	0.4	O-1a,	C,M,D
1.0	0.6	0.5	0.4	O-1b	,S
1	1	1	0	1.4	1.0
2	1	1	1	1.4	1.0
3	2	2	1	1.9	1.1
4	2	2	2	1.9	1.1
5	3	3	2	2.3	1.1
6	4	3	2	2.6	1.2
7	4	4	3	2.6	1.2
8	5	4	3	2.9	1.3
9	5	5	4	2.9	1.3
10	6	5	4	3.2	1.5
11	7	6	4	3.4	1.6
12	7	6	5	3.4	1.6
13	8	7	5	3.6	1.8
14	8	7	6	3.6	1.8
15	9	8	6	3.8	1.9
16	10	8	6	4.0	2.1
17	10	9	7	4.0	2.1
18	11	9	7	4.2	2.3
19	11	10	8	4.2	2.3
20	12	10	8	4.4	2.5
21	13	11	8	4.5	2.7
22	13	11	9	4.5	2.7
23	14	12	9	4.7	2.9
24	14	12	10	4.7	2.9
25	15	13	10	4.8	3.1
26	16	13	10	5.0	3.3
27	16	14	11	5.0	3.3
28	17	14	11	5.1	3.5
29	17	15	12	5.1	3.5
30	18	15	12	5.2	3.7
40	24	20	16	6.0	4.9
50	30	25	20	6.7	5.9
10 m v	vinds	are the	most appropri	ate to use	in


10 m winds are the most appropriate to use in determining Initial Spread Index (ISI) and making fire behavior predictions. However, many fire weather recording stations record windspeeds at 20 ft. If you are taking eye level winds, working with a NWS forecast product, or obtaining 20 ft readings from our fire weather sites, the 10 m winds may be estimated from the chart above.

in both area and perimeter tables

8.3.3 System Fuel Groups and Types

Designed specifically for use in predicting the full range of fire behavior in northern forest ecosystems, there are 16 fuel types among 5 fuel groups. The classification recognizes coarse vegetative cover and structure types:

	Conifer	ous Group	Table 8.3.3-1
Fuel Type	CBH (m/ft)	CFL (kg/m2)	Coniferous
C-1	2	0.75	fuel type variables
C-2	3	0.80	Tariables
C-3	8	1.15	
C-4	4	1.20	
C-5	18	1.20	
C-6	7(default)	1.80	
C-7	10	0.50	
Table 8.3.3-2 C	oniferous fuel type	descriptions	

FUEL TYPE	FOREST FLOOR /ORGANIC	SURFACE & LADDER FUEL	STRUCTURE COMPOSITION
C-1-Spruce Lichen Woodland	Continuous reindeer lichen; organic layer absent or shallow, uncompacted	Very sparse herb/shrub cover and down woody fuels; tree crowns extend to ground	Open black spruce with dense clumps; assoc. sp. Jack pine, white birch; well drained upland sites.
C-2-Boreal Spruce	Continuous feather moss and/or Cladonia; deep, compacted organic layer.	Continuous shrub (e.g., Labrador tea); low to moderate down woody fuels,; tree crowns extend nearly to ground arboreal lichens, flaky bark	Moderately well stocked black spruce stands on both upland and lowland sites; Sphagnum bogs excluded.
C-3-Mature Jack or Lodgepole Pine	Continuous feather moss; moderately deep, compacted organic layer.	Sparse conifer understory may be present; sparse down woody fuels; tree crowns separated from the ground.	Fully stocked jack or lodgepole pine stands; mature.
C-4-Immature Jack or Lodgepole Pine	Continuous needle litter; moderately compacted organic layer.	Moderate shrub/herb cover; continuous vertical crown fuel continuity; heavy standing dead and down, dead woody fuel.	Dense jack or lodgepole pine stands; immature.
C-5-Red and White Pine	Continuous needle litter; moderately shallow organic layer	Moderate herb and shrub (e.g. hazel); moderate dense understory (e.g. red maple, balsam fir); tree crowns separated from ground.	Moderately well-stocked red and white pine stands; mature; assoc. sp. White spruce, white birch, and aspen.
C-6-Conifer Plantation	Continuous needle litter; moderately shallow organic layer	Absent herb/shrub cover; absent understory; tree crowns separated from ground	Fully stocked conifer plantations; complete crown closure regardless of mean stand height; mean stand crown base height controls ROS and crowning.
C-7- Ponderosa Pine /Douglas Fir	Continuous needle litter; absent to shallow organic layer	Discontinuous grasses, herbs, except in conifer thickets, where absent; light woody fuels; tree crowns separated from ground except in	Open ponderosa pine and Douglas-fir stands; mature uneven aged; assoc. sp. Western larch, lodgepole pine; understory conifer

thickets.

thickets.

Figure 8.3.3-2
Deciduous fuel
types

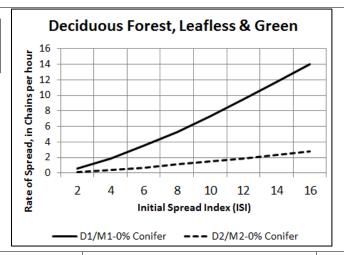
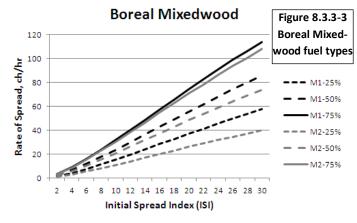
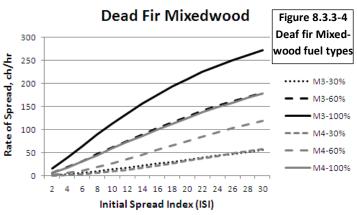




Table 8.3.3-3 Deciduous fuel type descriptions

FUEL TYPE	FOREST FLOOR /ORGANIC	SURFACE & LADDER FUEL	STRUCTURE COMPOSITION
D-1-Leafless D-2-Green	Continuous leaf litter; shallow, uncompacted organic layer.	Moderate medium to tall shrubs and herb layers; absent conifer understory; sparse, dead, down woody fuels.	Moderately well stocked trembling aspen stands; semimature; leafless (i.e., spring, fall or defoliated) and green (summer).

M-1-Boreal
Mixedwoodleafless
M-2-Boreal
Mixedwoodgreen

Continuous leaf litter in deciduous portions of stands; discontinuous feather moss and needle litter in conifer portions of stand; organic layers shallow, uncompacted to moderately compacted.

Moderate shrub and continuous herb layers; low to moderate dead, down woody fuels; conifer crowns extend nearly to ground; scattered to moderate conifer understory Moderately well stocked mixed stand of boreal conifers (e.g., black/white spruce, balsam/subalpine fir) and deciduous species (e.g., trembling aspen, white birch). Fuel types are differentiated by season and percent conifer vs. deciduous sp. composition

M-3-Dead Fir Mixedwoodleafless M-4-Dead Fir Mixedwood-

green

Continuous leaf litter in deciduous portions of stands; discontinuous feather moss, needle litter, & hardwood leaves in mixed portions conifer portions of stands; organic layers moderately compacted, 8-10 cm.

Dense, continuous herbaceous cover after greenup; down woody fuels low initially, but becoming heavy several years after balsam mortality; ladder fuels dominated by dead balsam understory.

Moderately well stocked mixed stand of spruce, pine and birch with dead balsam fir, often as an understory. Fuel types differentiated by season and time since balsam mortality.

Table 8.3.3-4 Mixedwood fuel type descriptions

Slash/Blowdown Fuels Figure 8.3.3-5 Rate of Spread, in Chains per Hour Slash/blowdown 80 70 fuel types 60 50 40 30 20 10 10 Table 8.3.3-5 Initial Spread Index (IS() Slash/blowdown fuel · · · · · S2-Spruce/Balsam === S3-Coastal Cedar type descriptions **FUEL TYPE FOREST FLOOR /ORGANIC SURFACE & LADDER FUEL** STRUCTURE COMPOSITION Continuous feather moss: Continuous slash, moderate loading Slash from clearcut logging; S-1-Jack Pine discontinuous needle and depth; high foliage retention; mature jack or lodgepole pine Slash litter; moderately deep, absent to sparse shrub and herb stands compacted organic layer. cover Continuous feather moss Continuous to discontinuous slash Slash from clearcut logging; S-2-White and needle litter: (due to skidder trails); moderate mature or overmature white Spruce & moderately deep, foliage retention; moderate loading spruce, subalpine fir or balsam fir **Balsam Slash** compacted organic layer and depth; moderate shrub and stands. herb cover. Continuous feather moss Continuous slash, high foliage Slash from clearcut logging; S-3-Coastal or compacted old needle retention (cedar), moderate for mature to overmature cedar, Cedar, litter below fresh needle other species; heavy loading, deep hemlock, or Douglas-fir stands. **Hemlock &** litter from slash; slash; sparse to moderate shrub and Doug-Fir Slash moderately deep to deep, herb cover compacted organic layer. Matted Grass (O1a) Standing Grass (O1b) 400 400 100% Cured 100% Cured 350 Rate of Spread, ch/h 300 Rate of Spread, ch/h 90% Cured 300 90% Cured 250 250 80% Cured 80% Cured 200 200 150 70% Cured 150 70% Cured 100 100 60% Cured - 60% Cured 50 Figure 8.3.3-6 Figure 8.3.3-7 Matted grass Standing grass 8 10 12 14 16 18 20 22 24 26 28 30 8 10 12 14 16 18 20 22 24 26 28 30 fuel types fuel types Initial Spread Index (ISI) Initial Spread Index (ISI) Continuous standing grass (current year crop). Subtypes for both early **O-1a-Matted** Continuous dead grass spring matted grass and late summer standing cured grass are included. Grass litter; organic layer absent Standard loading is 0.3 kg/m2, but other loading can be accommodated;

percent cured or dead must be estimated.

Scattered trees, shrubs, and/or down woody fuel.

Table 8.3.3-6 Grass fuel type descriptions

compacted.

O-1b-Standing

Grass

to shallow and moderately

8.3.4 C-1 and C-2 Fire Spread and Flame Length Outputs

Tables 8.3.4-1, 8.3.4-2 C-1 ROS, Flame length

Tables 8.3.4-3, 8.3.4-4 C-2 ROS, Flame length

C-1 – Spruce Lichen Woodland

C-2 - Boreal Spruce

RC			В				DEX				RC			В			P IN	DEX			
ch/	hr hr	10	30	50	70	90	110	130	150	170	ch/	hr	10	30	50	70	90	110	130	150	170
	2	0	0	0	0	0	0	0	0	0		2	1	3	4	4	5	5	5	5	5
	4	<1	<1	<1	<1	< 1	<1	<1	<1	<1	_	4	3	8	11	12	12	13	13	13	14
<u>S</u>	6	1	2	2	2	2	2	2	2	2	(ISI)	6	5	15	19	21	22	23	23	24	24
×	8	3	4	5	5	5	5	5	5	5	×	8	7	22	28	31	32	34	34	35	35
) E	10	6	9	9	10	10	10	10	10	10	Ē	10	9	29	37	41	43	45	46	47	48
SPREAD INDEX (ISI)	12	11	15	16	17	17	17	18	18	18	SPREAD INDEX	12	11	37	47	52	<i>5</i> 5	<i>57</i>	58	59	60
	14	17	24	26	26	27	27	27	27	28		14	14	<i>4</i> 5	57	63	66	69	70	<i>7</i> 2	<i>7</i> 3
₹	16	24	34	36	38	38	39	39	39	39	$\overline{\mathbf{X}}$	16	16	52	66	74	<i>7</i> 8	81	83	84	85
8	18	32	45	49	50	51	52	52	52	52	2	18	18	60	<i>7</i> 6	84	89	93	95	97	98
S	20	41	58	62	64	65	66	66	66	67	SP	20	21	68	86	95	101	104	107	109	111
	22	<i>50</i>	71	<i>7</i> 6	<i>7</i> 8	<i>7</i> 9	80	81	81	82		22	23	<i>7</i> 5	95	106	112	116	119	121	123
INITIAL	24	59	84	90	92	94	95	96	96	97	INITIAL	24	25	83	105	116	123	127	130	133	135
│	26	68	97	104	107	109	110	111	111	112	 	26	27	90	114	126	133	138	142	144	146
=	28	77	109	117	121	123	124	125	126	126	=	28	29	97	122	136	144	149	153	155	158
	30	85	121	130	134	136	138	139	140	140		30	31	103	131	145	153	159	163	166	168
Т	orching	J	C	onti	nuo	us C	row	n Fii	re		Т	orching		C	onti	nuo	us C	row	n Fii	e	
FLAME	I FNLft					P IN	DEX				FLAME	I FNLft					P IN	DEX			
LANE		10	30	50	70	90	110	130	150	170	LANL		10	30	50	70	90	110	130	150	170
	2	0	0	0	0	0	0	0	0	0		2	2	4	6	7	7	8	8	9	9
	4	1	1	2	2	2	2	2	2	2		4	3	7	10	11	12	13	14	14	14
<u>S</u>	6	3	3	3	3	3	3	3	3	3	<u>S</u>	6	3	10	13	15	16	17	18	19	19
×	8	4	5	5	5	5	5	5	5	5	×	8	4	12	16	18	20	21	22	23	23
SPREAD INDEX (ISI)	10	6	7	7	7	7	7	7	7	7	SPREAD INDEX (ISI)	10	4	14	18	21	23	24	25	26	26
Z	12	7	8	9	9	9	9	9	9	9	Z	12	5	16	20	23	25	27	28	29	30
	14	9	10	11	11	11	11	11	11	11		14	5	18	22	26	28	29	31	31	32
4	16	10	12	13	13	13	13	13	13	13	 	16	6	19	24	28	30	32	33	34	35
	18	12	14	14	15	15	15	15	15	15	~	18	6	20	26	29	<i>3</i> 2	34	35	36	37
S	20	13	16	16	16	16	16	17	17	17	S	20	7	21	27	31	34	36	37	38	39
	22	15	17	18	18	18	18	18	18	18		22	8	23	29	32	35	37	39	40	41
INITIAL	24	16	18	19	19	19	20	20	20	20	INITIAL	24	8	24	30	34	37	39	41	42	43
⊑	26	17	20	20	21	21	21	21	21	21	5	26	9	24	31	<i>3</i> 5	38	40	42	43	44
Z											_										
2	28 30	18 19		22 23	22 23	22 23	22	22 23	22 23	22 23	_	28	10 10	25 26	32 33	36 38	40 41	42 43	44 45	45 46	46 47

8.3.5 C-3 and C-4 Fire Spread and Flame Length Outputs

Tables 8.3.5-1, 8.3.5-2 C-3 ROS, Flame length

C-3 - Mature Jack or Lodgepole Pine Lodgepole Pine

C-4 - Immature Jack or

	<u></u>																				
R	os		Е	BUIL	.DUI	PIN	DEX	(Bl	JI)		ROS			Е	BUIL	DUI	PIN	DEX	(Bl	JI)	
ch	/hr	10	30	50	70	90	110	130	150	170	ch/hr		10	30	50	70	90	110	130	150	170
. 🖸	2	0	<1	<1	<1	<1	<1	<1	<1	<1	. 0	2	2	4	4	5	5	5	5	5	5
₹ ₹ ×	4	0	1	1	2	2	2	2	2	2	¦ ₹ X ∫ 4	T	5	10	11	12	13	13	13	13	13
	6	1	3	4	4	5	5	5	5	5		;	8	17	20	21	22	23	23	23	24
SP I	8	3	7	8	9	9	10	10	10	10	SP N	3	12	26	30	32	33	34	34	35	35
0,	10	5	12	14	16	16	17	17	17	18	10	0	16	34	40	42	44	45	46	46	47

	12	7	18	22	24	25	26	26	27	27		12	21	43	50	54	<i>5</i> 5	57	58	58	59
	14	10	25	31	33	35	36	37	37	38		14	25	52	61	65	67	69	70	70	71
	16	13	34	41	44	46	48	49	49	<i>50</i>		16	29	61	71	<i>7</i> 6	<i>7</i> 9	80	82	83	83
	18	16	43	52	56	59	61	62	63	63		18	33	70	82	<i>8</i> 7	90	92	94	95	96
	20	20	52	63	69	72	74	76	77	<i>7</i> 8		20	38	79	92	98	101	104	105	107	107
	22	24	62	<i>7</i> 5	82	86	88	90	91	92		22	42	88	102	109	112	115	117	118	119
	24	28	72	87	95	99	102	104	106	107		24	46	96	112	119	123	126	128	129	131
	26	32	82	100	108	113	117	119	121	122		26	50	104	121	129	134	137	139	140	142
	28	35	92	112	121	127	131	133	135	137		28	53	112	130	139	144	147	149	151	152
	30	39	102	124	134	141	145	148	150	152		30	57	120	139	148	154	157	160	161	163
Т	orching	J	C	onti	nuo	us C	row	n Fil	re		Т	orching		C	onti	nuo	us C	row	n Fii	e	
	1 FN 64		Е	BUIL	DUF	P IN	DEX	(Bl	JI)			1 FNI 64		Е	BUIL	DUF	P IN	DEX	(Bl	JI)	
FLAME	LEN-IT	10	30	50	70	90	110	130	150	170	FLAME	LEN-IT	10	30	50	70	90	110	130	150	170
	2	0	1	1	2	2	2	2	2	2		2	1	3	5	6	7	8	8	9	9
	4	0	2	3	4	4	5	5	5	5	_	4	1	5	8	10	12	13	14	14	15
(ISI)	6	1	3	5	6	7	8	8	8	9	(ISI)	6	2	6	11	14	16	17	18	19	20
×	8	1	4	7	8	10	11	11	12	12	×	8	2	8	15	18	20	21	22	23	24
INDEX	10	1	5	8	11	12	14	15	16	16	Ü	10	2	11	17	20	23	24	26	27	27
	12	2	6	10	13	16	18	19	20	20	Z	12	3	14	20	23	25	27	29	30	30
	14	2	7	12	17	20	22	23	24	24		14	3	16	22	25	28	30	31	32	33
🔣	16	2	9	15	20	23	25	26	27	28	I≅	16	3	18	23	27	30	32	34	35	36
R	18	2	9	19	23	26	28	29	30	31	8	18	3	19	25	29	32	34	36	37	38
SPREAD	20	3	10	21	26	28	31	32	33	34	SPREAD INDEX	20	3	21	26	30	34	36	38	39	40
	22	3	11	23	28	31	33	35	36	37		22	4	22	27	32	35	38	40	41	42
INITIAL	24	3	12	25	30	33	36	37	39	40	NITIAL	24	4	23	29	33	37	39	41	43	44
 	26	3	15	27	32	35	38	40	41	42		26	4	24	30	35	38	41	43	44	46
_	28	3	19	28	33	37	40	42	43	45	_ =	28	4	24	31	36	39	42	44	46	47
	30	3	22	30	35	39	42	44	46	47		30	4	25	32	37	41	44	46	47	49

8.3.6 C-5 and C-7 Fire Spread and Flame Length Outputs

C-5 – Red and White Pine

C-7 - Ponderosa Pine / Douglas-fir

Tables 8.3.6-1, 8.3.6-2 C-5 ROS, Flame length

RO	S		В	UIL	DU	IP I	NDI	ΞΧ (BUI)	RO	S		ВІ	JIL	DU	JP I	NDI	EX (BUI))
ch/	hr	10	30	50	70	90	110	130	150	170	ch/	hr	10	30	50	70	90	110	130	150	170
	2	0	0	0	<1	<1	<1	<1	<1	<1		2	<1	<1	<1	1	1	1	1	1	1
	4	0	<1	<1	<1	<1	<1	<1	<1	<1		4	1	2	2	2	2	2	2	2	2
<u>S</u>	6	1	1	1	1	1	1	1	1	1	(ISI)	6	2	3	3	4	4	4	4	4	4
INDEX (ISI)	8	1	3	3	3	3	3	3	3	3	×	8	3	5	6	6	6	6	6	6	7
Œ	10	2	5	6	6	6	6	6	6	7	INDEX	10	4	8	9	9	9	9	9	10	10
Z	12	4	8	9	10	10	10	10	11	11	Z	12	6	10	12	12	12	13	13	13	13
	14	5	11	13	14	15	15	15	15	15		14	8	13	15	16	16	16	16	17	17
₹	16	7	15	18	19	20	20	21	21	21	N N	16	10	17	18	19	20	20	20	21	21
RE	18	9	20	23	24	25	26	26	27	27	RE	18	12	20	22	23	24	24	24	25	25
SPREAD	20	11	24	28	30	31	32	32	32	33	SPREAD	20	13	23	26	27	28	28	28	29	29
_	22	14	29	33	35	37	37	38	38	39		22	15	26	29	31	32	32	33	33	33
INITIAL	24	16	33	38	41	42	43	44	44	45	INITIAL	24	17	30	33	35	36	36	37	37	37
	26	18	37	43	46	47	48	49	50	50	 	26	19	33	37	39	40	40	41	41	41
=	28	19	41	47	51	52	54	54	55	55	=	28	21	37	41	43	44	44	45	45	46
	30	21	44	52	55	57	58	59	60	60		30	23	40	44	46	48	48	49	49	50
Tord	ching		Co	onti	nu	ous	Cro	own	Fire		Tord	ching		Co	nti	nu	ous	Cro	own	Fire	

FLAME	I ENI 44		В	UIL	DU	JP I	NDI	EX (BUI)	FLAME L	ENI ##		В	JIL	DU	ΡI	NDE	ΞΧ (BUI))
FLAIVIE	LEIN-IL	10	30	50	70	90	110	130	150	170	FLAIVIE	-EIN-IL	10	30	50	70	90	110	130	150	170
	2	0	0	0	1	1	1	1	1	1		2	2	2	2	2	3	3	3	3	3
	4	0	1	1	2	2	2	2	2	3		4	3	4	4	4	5	5	5	5	5
(ISI)	6	0	1	2	3	4	4	4	5	5		6	4	5	6	6	6	7	7	7	7
	8	1	2	4	5	5	6	7	7	7		8	5	7	8	8	8	8	8	9	9
INDEX	10	1	3	5	6	7	8	9	9	10	INDEX	10	6	8	9	9	10	10	10	10	10
Z	12	1	4	6	8	9	10	11	12	12	Z	12	7	9	10	11	11	11	12	12	12
	14	1	4	7	9	11	12	13	14	14	ADI	14	8	11	12	12	13	13	13	13	13
EAD	16	1	5	8	11	12	14	15	16	16	4	16	8	12	13	13	14	14	14	15	15
Š.	18	1	6	9	12	14	16	17	18	18	<u> </u>	18	9	13	14	15	15	16	16	16	16
SPRE,	20	1	6	10	13	15	17	18	19	20	SPRE	20	10	14	15	16	17	17	17	17	18
	22	2	7	11	14	17	18	20	21	22	_	22	10	14	16	17	18	18	19	19	19
ĕ	24	2	7	11	15	18	20	21	23	24	I ≝ I	24	11	15	17	19	19	20	20	20	20
INITIAL	26	2	7	12	16	19	21	23	25	26	INITIAL	26	11	17	19	20	20	21	21	21	21
=	28	2	8	13	16	19	22	25	27	28	=	28	12	17	20	21	21	22	22	22	22
	30	2	8	13	17	20	23	27	28	29		30	12	18	20	21	22	23	23	23	23

8.3.7 C-6 Fire Spread and Flame Length Outputs

C-6 – Pine Plantation (6 ft Canopy Base Height)

C-6 - Pine Plantation (20 ft Canopy Base Height)

Tables 8.3.7-1, 8.3.7-2 C-6 low CBH ROS, Flame length

RO	S		Е	BUIL	DUF	P IN	DEX	(Bl	JI)		RO	S		E	BUIL	DU	P IN	DE	((B	UI)	
ch/	hr	10	30	50	70	90	110			170	ch/		10	30	50	70	90		130		170
	2	0	<1	<1	<1	<1	<1	<1	<1	<1		2	0	<1	<1	<1	<1	<1	<1	<1	<1
	4	1	2	2	2	2	3	4	4	4		4	1	2	2	2	2	2	2	2	2
(ISI)	6	2	4	7	12	14	15	16	17	17	(ISI)	6	2	4	5	5	5	5	5	6	6
	8	4	8	24	29	32	33	33	34	34		8	4	8	9	10	10	16	20	22	24
Œ	10	6	20	43	47	49	50	51	51	52) E	10	6	12	14	17	32	38	42	43	45
SPREAD INDEX	12	8	42	60	64	65	66	67	67	67	SPREAD INDEX	12	8	17	20	44	54	58	60	62	63
	14	11	61	74	77	<i>7</i> 8	79	<i>7</i> 9	<i>7</i> 9	80		14	11	23	32	64	71	74	76	76	77
¥	16	13	76	86	88	89	89	90	90	90	ĕ	16		28	59	80	85	87	87	88	88
조	18	16	88	96	97	98	98	98	98	99	<u> </u>	18	16	33	78	92	95	96	97	97	98
S	20	18	98	104	105	105		106	106		S	20	18		92	102	104	105		105	105
	22	20	107	111	112	112	112	112	112	112		22	20		103	109	111	111	112	112	112
NITIAL	24	22	114	117	117	118	118	118	118	_	NITIAL	24	22	46	111	116	117			118	118
Ë	26	24	120	122	123	123	123	123	123	123	Ë	26	24		118	122	122		123	123	123
_	28	25	125	127	127	127	127	127	127	127	_	28	25		124	126	127			127	127
	30	26	129	131	131	131	131	131		131		30	26		128		131	131		131	131
Т	orching						row				To	orching	ı						vn Fi		
FLAME	LEN-ft			_	DUF		DEX				FLAME	LEN-ft				.DU			((B		
		10	30	50	70	90			150				10	30	50	70	90		130		
	2	0	1	1	2	2	2	2	2	2		2	0	1	1	2	2	2	2	2	2
AD	4	<1	2	3	4	5	6	7	8	8	AD	4	<1	2	3	4	4	5	5	5	6
PRE,	6	1	3	5	9	12	13	14	15	16	PRE,	6	1	3	4	6	7	8	8	9	9
SPREA X (ISI)	8	1	4	11	15	18	20	21	22	23	SPRI X (IS	8	1	4	6	8	9	13	15	17	18
	10	1	7	16	20	23	25	26	27	28		10	1	4	7	10	17	21	23	25	26
INITIAL	12	1	13	20	24	27	29	30	31	32	INITIAL	12	1	5	9	18	23	26	28	30	31
	14	1	17	23	27	30	32	33	34	35	│ ≒ ≦	14	1	6	11	23	28	30	32	34	35
 	16	2	20	26	29	32	34	35	37	38	=	16	2	6	18	27	31	33	35	36	37
	18	2	22	27	31	33	36	37	38	39		18	2	/	22	29	33	35	37	38	39

20	2	24	29	32	35	37	39	40	41	20	2	7	25	31	34	37	38	40	ĺ
22	2	25	30	33	36	38	40	41	42	22	2	8	27	32	35	38	39	41	I
24	2	26	30	34	37	39	41	42	43	24	2	8	29	33	36	39	40	42	I
26	2	27	31	34	37	40	41	43	44	26	2	8	30	34	37	39	41	43	I
28	2	28	32	35	38	40	42	43	45	28	2	0	31	35	38	40	42	43	Ī
30	2	28	32	36	39	41	43	44	45	30	2	9	31	35	38	41	43	44	Ī

8.3.8 D-1 and D-2 Fire Spread and Flame Length Outputs

D-1-Leafless Hardwoods

D-2-Summer Hardwoods

Tables 8.3.8-1, 8.3.8-2 D-1 ROS, Flame length

ROS			BUILDUP INDEX (BUI)								RO	BUILDUP INDEX (BUI)									
ch/hr		10								, 170	ch/		10					110			
0117	2	0	1	1	1	1	1	1	1	1	0117	2	0	<1	<1	<u>-1</u>	<1	<1	<1	<1	<1
INITIAL SPREAD INDEX (ISI)	4	1	2	2	2	2	2	2	2	2	INITIAL SPREAD INDEX (ISI)	4	<1	<1	<1	<1	<1	<1	<1	<1	<1
	6	1	3	3	4	4	4	4	4	4		6	<1	1	1	1	1	1	1	1	1
	8	2	5	5	6	6	6	6	6	6		8	<1	1	1	1	1	1	1	1	1
	10	3	6	7	8	8	8	8	8	8		10	1	1	1	2	2	2	2	2	2
	12	4	8	9	10	10	11	11	11	11		12	1	2	2	2	2	2	2	2	2
	14	5	10	12	12	13	13	13	13	14		14	1	2	2	3	3	3	3	3	3
	16	6	12	14			16	16	16	16		16	1	2	3	3	3	3	3	3	3
	18	7	14	16		18	18	18	19	19		18	1	3	3	3	4	4	4	4	4
	20	8	16				21	21	21	22		20	2	3	4	4	4	4	4	4	4
	22	9	18			23	23	24	24	24		22	2	4	4	4	5	5	5	5	5
	24	9	20	23		25 25	26	26	27	27		24	2	4	5	5	5	5	5	5	5
	26		22			23 28	29	29	29	30		26	2	4	5	5	6	6	6	6	6
Z	28		24			30	31	32	32	32	Z	28	2	5	6	6	6	6	6	6	6
	20												2						7	7	7
		12	26	30	ソソ	.7.7	.47	· 1/I	 	・スト					h	h		/			
	30	12	26	30	32	33	34	34	34	35		30		5	6	6	7	7	/	1	
	30	12																			
FLAME	30		Вι	JIL	DU	JP I	IND	EX (BUI)	FLAME			В	JIL	DU	IP I	NDE	EX (BUI)	
FLAME	30 LEN-ft	10	Bl 30	JIL 50	DU 70	JP I 90	INDI 110	EX (BUI 150) 170	FLAME	LEN-ft	10	Bl 30	JIL 50	DU 70	IP I 90	NDE	EX (BUI) 150	170
	30 LEN-ft	10	BU 30	JIL 50 2	DU 70 2	JP I 90 2	110 2	EX (130 2	BUI 150 2) 1 70 2		LEN-ft	10	Bl 30 1	JIL 50 1	DU 70 1	IP I 90 1	NDE 110	EX (1 130	BUI) 150	170
	30 LEN-ft 2 4	10 1 1	Bl 30 1 2	JIL 50 2 3	DU 70 2 3	JP I 90 2 3	110 2 3	EX (130 2 4	BUI 150 2 4	170 2 4		LEN-ft	10 0 1	Bl 30 1	JIL 50 1	DU 70 1	90 1 2	NDE 110 1 2	EX (1 130 1 2	BUI) 150 1 2	170 1 2
	30 LEN-ft 2 4 6	10 1 1 1	Bl 30 1 2 3	JIL 50 2 3 4	DU 70 2 3 4	90 2 3 4	110 2 3 5	EX (130 2 4 5	BUI 150 2 4 5	170 2 4 5	(ISI)	LEN-ft 2 4 6	10 0 1	Bl 30 1 1 1	JIL 50 1 1	DU 70 1 1 2	90 1 2 2	NDE 110 1 2 2	EX (1 130 1 2 2	BUI) 150 1 2 2	170 1 2 2
	30 LEN-ft 2 4 6 8	10 1 1 1 2	Bl 30 1 2 3 3	JIL 50 2 3 4 4	DU 70 2 3 4 5	90 2 3 4 5	110 2 3 5	EX (130 2 4 5 6	BUI 150 2 4 5	170 2 4	(ISI)	LEN-ft 2 4 6 8	10 0 1 1	Bl 30 1 1 1 2	JIL 50 1 1 2	DU 70 1 1 2 2	90 1 2 2 3	NDE 110 1 2 2 3	EX (1 130 1 2 2 3	BUI) 150 1 2 2 3	170 1 2 2 3
	30 LEN-ft 2 4 6 8 10	10 1 1 1 2 2	Bl 30 1 2 3 4	JIL 50 2 3 4 4 5	DU 70 2 3 4 5	90 2 3 4	110 2 3 5 5	EX (130 2 4 5	BUI 150 2 4 5 6 7	170 2 4 5 6 7	(ISI)	LEN-ft 2 4 6 8 10	10 0 1 1 1	Bl 30 1 1 1 2 2	JIL 50 1 1 2 2	DU 70 1 1 2 2 3	90 1 2 2 3	NDE 110 1 2 2 3 3	EX (1 130 1 2 2	BUI) 150 1 2 2	170 1 2 2 3 3
	30 LEN-ft 2 4 6 8 10 12	10 1 1 1 2 2 2	Bl 30 1 2 3 4 5	JIL 50 2 3 4 4 5 6	DU 70 2 3 4 5 6 6	90 2 3 4 5 6 7	110 2 3 5 5 6	EX (130 2 4 5 6 7	BUI 150 2 4 5 6 7	170 2 4 5 6 7 8	(ISI)	LEN-ft 2 4 6 8 10 12	10 0 1 1 1 1	Bl 30 1 1 1 2 2	JIL 50 1 1 2 2 2	DU 70 1 1 2 2 3	90 1 2 2 3	NDE 110 1 2 2 3	130 1 2 2 3 3	BUI) 150 1 2 2 3 3	170 1 2 2 3 3 4
	30 LEN-ft 2 4 6 8 10 12 14	10 1 1 1 2 2 2 2	Bl 30 1 2 3 4 5 5	JIL 50 2 3 4 4 5 6	70 2 3 4 5 6 6	90 2 3 4 5 6 7	110 2 3 5 5 6 7 8	EX (130 2 4 5 6 7 7	BUI 150 2 4 5 6 7 7	170 2 4 5 6 7 8	(ISI)	LEN-ft 2 4 6 8 10 12 14	10 0 1 1 1 1 1	BU 30 1 1 1 2 2 2 2	JIL 50 1 1 2 2 2 3	70 1 1 2 2 3 3	90 1 2 2 3 3 4	NDE 110 1 2 3 3 4	130 1 2 2 3 3	BUI) 150 1 2 2 3 3 4 4	170 1 2 2 3 3 4 4
	30 LEN-ft 2 4 6 8 10 12	10 1 1 1 2 2 2	Bl 30 1 2 3 4 5	JIL 50 2 3 4 4 5 6	DU 70 2 3 4 5 6 6	90 2 3 4 5 6 7	110 2 3 5 5 6	EX (130 2 4 5 6 7	BUI 150 2 4 5 6 7	170 2 4 5 6 7 8	(ISI)	LEN-ft 2 4 6 8 10 12	10 0 1 1 1 1	Bl 30 1 1 1 2 2	JIL 50 1 1 2 2 2	DU 70 1 1 2 2 3	90 1 2 3 3	NDE 110 1 2 2 3 3	EX (1 130 1 2 2 3 3 4 4	BUI) 150 1 2 2 3 3 4	170 1 2 2 3 3 4 4
	30 LEN-ft 2 4 6 8 10 12 14 16 18	10 1 1 1 2 2 2 2 2 3 3	BU 30 1 2 3 4 5 5 5 6	JIL 50 2 3 4 4 5 6 6 7 7	DU 70 2 3 4 5 6 7 8 8	JP I 90 2 3 4 5 6 7 8 8	110 2 3 5 5 6 7 8 8	EX (130 2 4 5 6 7 7 8 9	BUI 150 2 4 5 6 7 7 8 9) 170 2 4 5 6 7 8 8 9	(ISI)	LEN-ft 2 4 6 8 10 12 14 16 18	10 0 1 1 1 1 1 1 1 1	Bl 30 1 1 2 2 2 2 2 3 3	JIL 50 1 1 2 2 2 3 3 3 3	70 1 1 2 3 3 4 4	90 1 2 3 3 4 4	NDE 110 1 2 2 3 3 4 4 4	130 1 2 2 3 3 4 4 4	BUI) 150 1 2 2 3 3 4 4 4 5	170 1 2 2 3 3 4 4 4 5
SPREAD INDEX (ISI)	30 LEN-ft 2 4 6 8 10 12 14 16 18 20	10 1 1 1 2 2 2 2 3 3 3	Bl 30 1 2 3 4 5 5 5 5	JIL 50 2 3 4 4 5 6 6 7 7 8	DU 70 2 3 4 5 6 6 7 8 8 9	JP I 90 2 3 4 5 6 7 8 8 9	110 2 3 5 5 6 7 8 8 9	EX (130 2 4 5 6 7 7 8 9 9	BUI 150 2 4 5 6 7 7 8 9 10) 170 2 4 5 6 7 8 8 9 10	SPREAD INDEX (ISI)	LEN-ft 2 4 6 8 10 12 14 16 18 20	10 0 1 1 1 1 1 1 1 1 1	Bl 30 1 1 1 2 2 2 2 3 3 3	JIL 50 1 1 2 2 2 3 3 3 4	DU 70 1 1 2 2 3 3 4 4 4	1 2 2 3 3 4 4 4 4	NDE 110 1 2 2 3 3 4 4 4 4 5	EX (1130 1 2 2 3 3 4 4 4 4 5 5	BUI) 150 1 2 2 3 3 4 4 4 4 5	170 1 2 2 3 3 4 4 4 4 5 5
SPREAD INDEX (ISI)	30 LEN-ft 2 4 6 8 10 12 14 16 18 20 22	10 1 1 2 2 2 2 2 3 3 3 3	30 1 2 3 4 5 5 5 6 6 7	50 2 3 4 4 5 6 6 7 7 8 8	DU 70 2 3 4 5 6 7 8 8 9 9	JP I 90 2 3 4 5 6 7 8 8 9 9 10	110 2 3 5 5 6 7 8 8 9 10	EX (130 2 4 5 6 7 7 8 9 9 10	BUI 150 2 4 5 6 7 7 8 9 10 10) 170 2 4 5 6 7 8 8 9 10 10	SPREAD INDEX (ISI)	LEN-ft 2 4 6 8 10 12 14 16 18 20 22	10 0 1 1 1 1 1 1 1 1 1 1	BU 30 1 1 1 2 2 2 2 3 3 3 3 3 3	JIL 50 1 1 2 2 2 3 3 3 3 4 4	DU 70 1 2 2 3 3 4 4 4	1P I 90 1 2 2 3 3 4 4 4 4 4 5	NDE 110 1 2 3 3 3 4 4 4 4 5	EX (130 1 2 2 3 3 4 4 4 4 5 5 5	BUI) 150 1 2 2 3 3 4 4 4 5 5	170 1 2 2 3 3 4 4 4 5 5
SPREAD INDEX (ISI)	30 LEN-ft 2 4 6 8 10 12 14 16 18 20 22 24	10 1 1 1 2 2 2 2 3 3 3	BU 30 1 2 3 4 5 5 6 6	JIL 50 2 3 4 4 5 6 6 7 7 8	70 2 3 4 5 6 6 7 8 8 9 9	JP I 90 2 3 4 5 6 7 8 8 9 9 10 10	110 2 3 5 5 6 7 8 8 9 10 10	EX (130 2 4 5 6 7 7 8 9 9 10 11	BUI 150 2 4 5 6 7 7 8 9 10 10 11) 170 2 4 5 6 7 8 8 9 10 10 11	SPREAD INDEX (ISI)	LEN-ft 2 4 6 8 10 12 14 16 18 20 22 24	10 0 1 1 1 1 1 1 1 1 1 1 1 1 2	Bl 30 1 1 1 2 2 2 2 3 3 3	JIL 50 1 1 2 2 2 3 3 3 4	70 1 1 2 2 3 3 3 4 4 4 4 4 5	90 1 2 3 3 3 4 4 4 4 5 5	NDE 110 1 2 2 3 3 4 4 4 4 5	EX (1130 1 2 2 3 3 4 4 4 4 5 5	BUI) 150 1 2 2 3 3 4 4 5 5 5	170 1 2 2 3 3 4 4 4 5 5 5
	30 LEN-ft 2 4 6 8 10 12 14 16 18 20 22 24 26	10 1 1 1 2 2 2 2 3 3 3 3 3 3 3	Bl 30 1 2 3 3 4 5 5 6 6 7 7 7 7	JIL 50 2 3 4 4 5 6 6 7 7 8 8 9	DU 70 2 3 4 5 6 7 8 8 9 10 10	JP I 90 2 3 4 5 6 7 8 8 9 9 10 10 11	110 2 3 5 6 7 8 8 9 10 10 11	EX (130 2 4 5 6 7 7 8 9 9 10 11 11	BUI 150 2 4 5 6 7 8 9 10 10 11 11 12) 170 2 4 5 6 7 8 8 9 10 10 11 11	(ISI)	LEN-ft 2 4 6 8 10 12 14 16 18 20 22 24 26	10 0 1 1 1 1 1 1 1 1 1 1 1 2 2	Bl 1 1 1 2 2 2 3 3 3 3 3 3 3 3 3	JIL 50 1 1 2 2 2 3 3 3 4 4 4 4	70 1 1 2 3 3 4 4 4 4 5 5	90 1 2 3 3 4 4 4 4 5 5	NDE 110 1 2 3 3 4 4 4 5 5 5	EX (1130) 1 2 2 3 3 4 4 4 4 5 5 5 6	BUI) 150 1 2 2 3 3 4 4 4 5 5 5 5	170 1 2 2 3 3 4 4 4 4 5 5 5 5
SPREAD INDEX (ISI)	30 LEN-ft 2 4 6 8 10 12 14 16 18 20 22 24	10 1 1 1 2 2 2 2 3 3 3 3 3	30 1 2 3 3 4 5 5 6 6 7 7	50 2 3 4 4 5 6 6 7 7 8 8 9	70 2 3 4 5 6 6 7 8 8 9 9	JP I 90 2 3 4 5 6 7 8 8 9 9 10 10	110 2 3 5 5 6 7 8 8 9 10 10	EX (130 2 4 5 6 7 7 8 9 9 10 11	BUI 150 2 4 5 6 7 7 8 9 10 10 11) 170 2 4 5 6 7 8 8 9 10 10 11	SPREAD INDEX (ISI)	LEN-ft 2 4 6 8 10 12 14 16 18 20 22 24	10 0 1 1 1 1 1 1 1 1 1 1 1 1 2	Bll 30 1 1 1 2 2 2 2 3 3 3 3 3 3 3 3	JIL 50 1 1 2 2 2 3 3 3 4 4 4	70 1 1 2 2 3 3 3 4 4 4 4 4 5	90 1 2 3 3 3 4 4 4 4 5 5	NDE 110 1 2 2 3 3 4 4 4 4 5 5	130 1 2 2 3 3 4 4 4 4 5 5	BUI) 150 1 2 2 3 3 4 4 5 5 5	170 1 2 2 3 3 4 4 4 5 5 5

8.3.9 M-1 and M-2 (25% Conifer) Fire Spread and Flame Length Outputs

Tables 8.3.9-1, 8.3.9-2 M-1 25% ROS, Flame length

Conifer

RC)S							EX (RO	S								BUI)	
ch	/hr	10	30	50	70	90	110	130	150	170	ch/	hr	10	30	50	70	90	110	130	150	170
	2	1	1	2	2	2	2	2	2	2		2	1	1	1	1	1	1	1	1	1
	4	2	4	4	5	5	5	5	5	5		4	1	3	3	3	4	4	4	4	4
<u>S</u>	6	3	7	8	8	8	0	9	9	9	<u>S</u>	6	2	5	6	6	6	6	6	6	7
×	8	5	10	11	12	13	13	13	13	13	×	8	3	7	8	9	9	9	9	10	10
E	10	6	13	15	16	17	17	18	18	18	Œ	10	5	10	11	12	12	13	13	13	13
불	12	8	17	20	21	22	22	23	23	23	Z	12	6	12	14	15	16	16	16	16	16
	14	10	21	24	26	26	27	27	28	28	D 1	14	7	15	17	18	19	19	20	20	20
ĕ	16		24	28	30	31	32	32	33	33	Ϋ́	16	8	17	20	21	22	23	23	23	23
2	18	13	28		35	36	37	37	38	38	R	18	9	20	23	25	25	26	26	27	27
SPREAD INDEX (ISI)	20				39	41	42	42	43	43	SPREAD INDEX (ISI)	20	11		26		29	29	30	30	30
	22	17	36		44		47	47	48	48		22			29		32	33	33	34	34
INITIAL	24	19	39	46	49	<i>50</i>	51	52	53	53	INITIAL	24	13	27	32	34	35	36	36	37	37
 	26	20	43	<i>50</i>	53	55	56	<i>57</i>	58	58	=	26	14		35	37	38	39	40	40	40
=	28	22	46	54	<i>57</i>	59	61	62	62	63	=	28	15	32	37	40	41	42	43	43	44
	30	24	50				65	66	67	67		30	16	_			44	45	46	46	47
Tor	ching		Co	nti	inu	ous	Cro	own	Fire		Tore	ching		Co	onti	่ทน	ous	s Cro	own	Fire	
FLAME	I ENL-ft						ND	EX (BUI))	FLAME	I ENL-ft				DU	JP I	IND	EX (BUI))
I LAWL	LLIN-II	10	30	50	70	90	110	130	150	170	ILANIL	LLIN-IL	10	30	50	70	90	110	130	150	170
	2	1	2	3	3	4	4	4	4	4		2	1	2	3	3	3	3	3	3	4
	4	2	4	5	5	6	6	6	6	6		4	1	3	4	5	5	5		5	6
<u>S</u>	6	2	_	_				v									J	ວ	5		
			5	6	7	7	8	8	8	8	ISI.	6	2	4	5	6	6	7	7	7	7
	8	3	6	7	7 8	9	9	8 10	8 10	8	X (ISI	6 8	2	4 5	5 6	6 7	6 8	7	7 8	7 8	9
Ĥ	10	3	6	7	8 9	9 10	9	8 10 11	8 10 11	8 10 11	OEX (ISI	8 10	2	4 5 6	5 6 7	6 7 8	6 8 9	7 8 9	7 8 9	7 8 10	9
INDE	10 12	3 3 3	6 6 7	7 8 9	8 9 10	9 10 11	9 11 12	8 10 11 12	8 10 11 13	8 10 11 13	INDEX (ISI	8 10 12	2 3 3	4 5 6 6	5 6 7 8	6 7 8 9	6 8 9 10	7 8 9 10	7 8 9 10	7 8 10 11	9 10 11
D INDE)	10 12 14	3 3 3 4	6 6 7 8	7 8 9 10	8 9 10 11	9 10 11 12	9 11 12 13	8 10 11 12 13	8 10 11 13 14	8 10 11 13 14	D INDEX (ISI	8 10 12 14	2 3 3 3	4 5 6 6 7	5 6 7 8 9	6 7 8 9	6 8 9 10 11	7 8 9 10 11	7 8 9 10 11	7 8 10 11 12	9 10 11 12
EAD INDEX	10 12 14 16	3 3 3	6 6 7 8 9	7 8 9 10 11	8 9 10 11 12	9 10 11 12 13	9 11 12 13 14	8 10 11 12 13 14	8 10 11 13 14 15	8 10 11 13 14 15	EAD INDEX (ISI	8 10 12 14 16	2 3 3 3 3	4 5 6 6 7 7	5 6 7 8 9	6 7 8 9 10	6 8 9 10	7 8 9 10 11 12	7 8 9 10 11 12	7 8 10 11 12 13	9 10 11 12 13
READ INDE)	10 12 14 16 18	3 3 3 4	6 7 8 9	7 8 9 10 11	8 9 10 11 12 13	9 10 11 12 13 14	9 11 12 13 14 15	8 10 11 12 13 14 15	8 10 11 13 14 15 16	8 10 11 13 14 15 16	READ INDEX (ISI	8 10 12 14 16 18	2 3 3 3 3 4	4 5 6 7 7 8	5 6 7 8 9 9	6 7 8 9 10 10	6 8 9 10 11 11 12	7 8 9 10 11 12 13	7 8 9 10 11 12 13	7 8 10 11 12 13 14	9 10 11 12 13 14
SPREAD INDE)	10 12 14 16 18 20	3 3 4 4	6 7 8 9 9	7 8 9 10 11 12 12	8 9 10 11 12 13 14	9 10 11 12 13 14 15	9 11 12 13 14 15 16	8 10 11 12 13 14 15 16	8 10 11 13 14 15 16 17	8 10 11 13 14 15 16 17	SPREAD INDEX (ISI	8 10 12 14 16 18 20	2 3 3 3 4 4	4 5 6 7 7 8 8	5 6 7 8 9 9 10 10	6 7 8 9 10 10 11 12	6 8 9 10 11 11 12 13	7 8 9 10 11 12 13 13	7 8 9 10 11 12 13 14	7 8 10 11 12 13 14 14	9 10 11 12 13 14 15
L SPREAD INDEX (ISI)	10 12 14 16 18 20 22	3 3 4 4 4 4 5	6 7 8 9 9 10	7 8 9 10 11 12 12 13	8 9 10 11 12 13 14 15	9 10 11 12 13 14 15 16	9 11 12 13 14 15 16 17	8 10 11 12 13 14 15 16 17	8 10 11 13 14 15 16 17 18	8 10 11 13 14 15 16 17 18	AL SPREAD INDEX (ISI)	8 10 12 14 16 18 20 22	2 3 3 3 4 4 4	4 5 6 7 7 8 8	5 6 7 8 9 10 10	6 7 8 9 10 10 11 12 12	6 8 9 10 11 11 12 13	7 8 9 10 11 12 13 13	7 8 9 10 11 12 13 14	7 8 10 11 12 13 14 14 15	9 10 11 12 13 14 15 15
	10 12 14 16 18 20 22 24	3 3 4 4 4 4 5 5	6 7 8 9 10 10 11	7 8 9 10 11 12 12 13 14	8 9 10 11 12 13 14 15	9 10 11 12 13 14 15 16 17	9 11 12 13 14 15 16 17 17	8 10 11 12 13 14 15 16 17 18	8 10 11 13 14 15 16 17 18	8 10 11 13 14 15 16 17 18 19		8 10 12 14 16 18 20 22 24	2 3 3 3 4 4 4 4	4 5 6 7 7 8 8 9	5 6 7 8 9 10 10 11 11	6 7 8 9 10 10 11 12 12	6 8 9 10 11 11 12 13 13	7 8 9 10 11 12 13 13 14 15	7 8 9 10 11 12 13 14 15	7 8 10 11 12 13 14 14 15 16	9 10 11 12 13 14 15 15
	10 12 14 16 18 20 22 24 26	3 3 4 4 4 4 5 5	6 7 8 9 10 10 11	7 8 9 10 11 12 12 13 14 14	8 9 10 11 12 13 14 15 16	9 10 11 12 13 14 15 16 17	9 11 12 13 14 15 16 17 17	8 10 11 12 13 14 15 16 17 18 19	8 10 11 13 14 15 16 17 18 18	8 10 11 13 14 15 16 17 18 19		8 10 12 14 16 18 20 22 24 26	2 3 3 3 4 4 4 4 4	4 5 6 7 7 8 8 9 9	5 6 7 8 9 10 10 11 11 12	6 7 8 9 10 10 11 12 12 13 13	6 8 9 10 11 11 12 13 14 15	7 8 9 10 11 12 13 13 14 15	7 8 9 10 11 12 13 14 15 15	7 8 10 11 12 13 14 14 15 16	9 10 11 12 13 14 15 15 16 17
INITIAL SPREAD INDE)	10 12 14 16 18 20 22 24	3 3 4 4 4 4 5 5	6 7 8 9 10 10 11	7 8 9 10 11 12 12 13 14	8 9 10 11 12 13 14 15 16 17	9 10 11 12 13 14 15 16 17	9 11 12 13 14 15 16 17 17	8 10 11 12 13 14 15 16 17 18	8 10 11 13 14 15 16 17 18	8 10 11 13 14 15 16 17 18 19	INITIAL SPREAD INDEX (ISI	8 10 12 14 16 18 20 22 24	2 3 3 3 4 4 4 4	4 5 6 7 7 8 8 9	5 6 7 8 9 10 10 11 11	6 7 8 9 10 10 11 12 12	6 8 9 10 11 11 12 13 13	7 8 9 10 11 12 13 13 14 15	7 8 9 10 11 12 13 14 15	7 8 10 11 12 13 14 14 15 16	9 10 11 12 13 14 15 15

8.3.10 M-1 and M-2 (50% Conifer) Fire Spread and Flame Length Outputs

M-1-Boreal Mixedwood-Leafless; 50% Conifer Tables 8.3.10-1, 8.3.10-2 M-1 50% ROS, Flame length

M-2-Boreal Mixedwood-Green; 50%

Conifer

	ROS BUILDUP INDEX (BU											-			_		_	-		->/ /		
	RO	5		В	UIL	.DL	J۲	INDI	EX (BUI)	RO	S		В	JIL	DU	J۲	IND	EX (BUI))
	ch/hr 10 30 50 70 90 110 130 150						170	ch/l	hr	10	30	50	70	90	110	130	150	170				
		2	1	2	2	3	3	3	3	3	3		2	1	2	2	2	2	3	3	3	3
_ '	<u>ত</u> ত	4	3	6	7	7	7	8	8	8	8	ے <u>ت</u>	4	2	5	6	6	7	7	7	7	7
<u>∠</u> i	ロマ	6	5	10	12	13	13	13	14	14	14		6	4	9	10	11	12	12	12	12	12
	띴	8	7	15	18	19	19	20	20	20	21		8	6	13	15	16	17	17	18	18	18
	访딩	10	10	20	24	25	26	27	27	27	28		10	9	18	21	22	23	23	24	24	24
	_	12	12	26	30	32	33	34	34	35	35		12	11	23	26	28	29	30	30	30	31

	14	15	31	36	39	40	41	42	42	43		14	13	27	32	34	35	36	36	37	37
	16		37		46		48	49	50	50		16		32		40	<u>41</u>	42	43	43	44
	18		42		53		56	57	57	58		18		37				48	49	50	50
	20				59		63	64	65	65		20	20	42		51		55	55	56	57
	22	_	_		66		70	71	72	72		22	22	46		<i>57</i>		61	62	62	63
	24				73		77	78	79	80		24		51		63		67	68	68	69
	26	_	_		79		84	85	86	87		26		55		68		72	73	74	<i>7</i> 5
	28	33	69	80	85	88	90	92	93	94		28	28	59	69	74	76	78	79	80	81
	30	35	74	86	91	95	97	98	99	100		30	30	64	74	79	81	83	85	86	86
Tor	ching		Co	onti	inu	ous	s Cro	own	Fire		Tord	ching		Co	onti	inu	ous	s Cro	own	Fire	
FLAME	I ENI 44		В	JIL	.DL	JP I	NDI	EX (BUI)			I ENI 44		ВІ	JIL	DU	IP I	INDI	EX (BUI))
FLAIVIE	LEN-IT	10	30	50	70	90	110	130	150	170	FLAME	LEN-IT	10	30	50	70	90	110	130	150	170
	2	1	3	4	4	5	5	5	5	6		2	1	3	4	4	5	5	5	5	5
	4	2	5	6	7	8	8	8	9	9	~	4	2	5	6	7	7	8	8	8	8
<u>S</u>	6	3	6	8	9	10	11	11	11	12	(ISI)	6	3	6	8	9	9	10	10	11	11
×	8	3	8	10	11	12	13	14	14	14	×	8	3	7	9	10	12	12	13	13	13
Щ	10	4	9	11	13	14	15	16	16	17	Ē	10	4	8	11	12	13	14	15	15	16
	12	4	10	13	15	16	17	18	18	19	Z	12	4	9	12	14	15	16	17	17	17
	14	5	11	15	17	18	19	20	20	20		14	5	10	14	16	17	18	18	19	19
<u> </u>	16	5	12	16	18	19	20	21	22	22	Z.	16	5	11	15	17	18	19	20	20	21
8	18	6	13	17	19	21	22	23	23	24	RE	18	5	12	16	18	19	20	21	22	22
SPREAD INDEX (ISI)	20	6	14	18	20	22	23	24	24	25	SPREAD INDEX	20	6	13	17	19	21	22	22	23	23
	22	6	15	19	21	23	24	25	26	26		22	6	14	18		22	23	23	24	25
INITIAL	24	6	16		22		25	26	27	27	INITIAL	24	6	15		21		24	25	25	26
 ≒	26	7	17		23		26	27	28	28		26	6	16		22		25	25	26	27
=	28	7	18		24		27	28	29	30		28	6	16				25	26	27	28
	30	7			25		28	29	30	30		30	7	17		23			27	28	28

8.3.11 M-1 and M-2 (75% Conifer) Fire Spread and Flame Length Outputs

Tables 8.3.11-1, 8.3.11-2 M-1 75% ROS, Flame length

M-1-Boreal Mixedwood-Leafless; 75% Conifer

M-2-Boreal Mixedwood-Green; 75%

Conifer

RO	S		E	BUIL	_DU	P IN	IDE)	(B	UI)		RC	S		E	BUIL	_DU	P IN	IDE)	(B	UI)	
ch/	hr	10	30	50	70	90	110	130	150	170	ch/	hr	10	30	50	70	90	110	130	150	170
	2	1	3	3	4	4	4	4	4	4		2	1	3	3	3	4	4	4	4	4
	4	4	8	9	10	10	10	10	11	11	_	4	4	8	9	9	10	10	10	10	10
(ISI)	6	7	14	16	17	18	18	18	19	19	(ISI)	6	6	13	15	16	17	17	18	18	18
	8	10	20	24	25	26	27	27	27	28		8	9	20	23	24	25	26	26	26	27
INDEX	10	13	27	32	34	35	36	37	37	37	INDEX	10	12	26	30	32	34	34	35	35	36
Z	12	17	35	40	43	44	45	46	47	47	Z	12	16	33	38	41	42	43	44	45	45
ADI	14	20	42	49	52	54	55	56	57	<i>57</i>		14	19	40	46	50	51	52	53	54	54
ĕ	16	24	49	<i>57</i>	61	63	65	66	67	67	⋖	16	22	47	<i>5</i> 5	58	60	62	63	63	64
8	18	27	<i>57</i>	66	70	73	74	76	76	77	ğ	18	26	54	63	67	69	71	72	73	73
SPRE	20	30	64	74	<i>7</i> 9	82	84	<i>8</i> 5	86	87	SPRE	20	29	61	71	<i>7</i> 5	<i>7</i> 8	80	81	82	83
_	22	34	71	83	88	91	93	95	96	97		22	32	68	<i>7</i> 8	84	87	89	90	91	92
₹	24	37	78	91	97	100	102	104	105	106	I ₹	24	35	74	86	92	95	97	99	100	101
INITIAL	26	40	85	99	105	109	111	113	114	115	INITIA	26	38	81	93	100	103	106	107	108	109
=	28	44	92	106	113	117	120	122	123	124	=	28	41	87	101	107	111	114	116	117	118
	30	47	98	114	121	125	128	130	132	133		30	44	93	108	115	119	122	124	125	126

To	orching		(Cont	inuc	ous (Crov	vn F	ire		To	orching		(Cont	inuc	ous (Сгои	ın Fi	re	
FLAME	I ENL-ft		E	3UII	_DU	P IN	IDE	((B	UI)		FLAME	I ENL-ft		E	3UIL	_DU	P IN	DE)	((B	UI)	
I LANE	LLIN-IL	10	30	50	70	90	110	130	150	170	I LAWL	LLIN-II	10	30	50	70	90	110	130	150	170
	2	2	4	5	6	6	7	7	7	7		2	2	4	5	6	6	6	7	7	7
	4	3	6	8	9	10	10	11	11	11	_	4	3	6	8	9	10	10	11	11	11
(ISI)	6	4	8	10	12	13	14	15	15	15	(ISI)	6	4	8	10	12	13	14	14	15	15
×	8	4	9	13	15	16	17	18	18	19	×	8	4	9	13	14	16	17	17	18	18
Œ	10	5	11	15	17	19	20	20	21	21	Ē	10	5	11	15	17	18	19	20	21	21
INDEX	12	5	13	17	19	21	22	23	24	24	INDEX	12	5	13	17	19	21	22	22	23	23
	14	6	15	19	21	23	24	25	26	26		14	6	15	19	21	22	24	25	25	26
✓	16	6	17	21	23	25	26	27	28	28	<u> </u>	16	6	16	20	23	24	25	26	27	28
SPRE	18	7	18	22	25	26	28	29	30	30	SPREAD	18	7	17	22	24	26	27	28	29	30
SP	20	7	19	23	26	28	29	30	31	32	SP	20	7	19	23	25	27	29	30	31	31
	22	8	20	24	27	29	31	32	33	34		22	7	19	24	27	29	30	31	32	33
INITIA	24	8	21	26	29	31	32	33	34	35	NITIAL	24	8	20	25	28	30	31	33	34	34
I ₩	26	8	22	27	30	32	33	35	36	36	Ę	26	8	21	26	29	31	33	34	35	36
=	28	9	23	27	31	33	35	36	37	38	=	28	8	22	27	30	32	34	35	36	<i>37</i>
	30	9	23	28	32	34	36	37	38	39		30	9	23	28	31	33	35	36	37	38

8.3.12 M-3 and M-4 (30% Dead Balsam Fir) Fire Spread and Flame Length Outputs

M-3-30% Dead Balsam Fir Mixedwood-leafless Tables 8.3.12-1, 8.3.12-2 M-3 30% ROS, Flame length M-4

M-4-30% Dead Balsam Fir

Mixedwood-Green

Mixedwo	ou-orec	711																			,
RO	S		В	JIL	DŪ	JP I	NDI	EX (BUI)	RO	S		В	JIL	DŪ	IP I	NDE	EX (BUĪ))]
ch/	hr	10	30	50	70	90	110	130	150	170	ch/	hr	10	30	50	70	90	110	130	150	170
	2	1	1	1	1	1	1	1	1	1		2	<1	<1	<1	<1	<1	<1	<1	<1	<1
	4	1	3	4	4	4	4	4	4	4		4	1	1	1	1	2	2	2	2	2
<u>S</u>	6	3	6	7	7	7	7	8	8	8	(ISI)	6	1	3	3	3	4	4	4	4	4
×	8	4	9	10	11	11	11	11	12	12	×	8	2	5	6	6	7	7	7	7	7
Ē	10	6	12	14	15	15	16	16	16	16	Ē	10	4	8	9	10	10	11	11	11	11
Z	12	7	15	18	19	20	20	20	21	21		12	5	11	13	14	15	15	15	15	16
	14	9	19	22	23	24	25	25	25	26		14	7	15	18	19	20	20	20	21	21
₹	16	11	23	26	28	29	30	30	30	31	K	16	9	19	22	24	25	25	26	26	26
SPREAD INDEX (ISI)	18	13	26	30	32	34	34	35	35	36	SPREAD INDEX	18	11	24	27	29	30	31	31	32	32
SP	20	14	30	35	37	38	39	40	40	41	SP	20	13	28	32	35	36	37	37	38	38
	22	16	34	39	42	<i>4</i> 3	44	45	45	46		22	15	32	38	40	<i>4</i> 2	43	43	44	44
INITIAL	24	18	37	<i>4</i> 3	46	<i>4</i> 8	49	50	50	51	INITIAL	24	18	37	43	46	47	48	49	<i>50</i>	<i>50</i>
	26	20	41	48	51	53	54	55	<i>55</i>	56		26	20	41	48	51	53	54	55	56	56
_ =	28	21	45	52	55	<i>57</i>	58	59	60	61	=	28	22	46		56		<i>60</i>	61	61	62
		23	48	56	59	62	63	64	65	65		30	24				64	65	66	67	68
Tord	ching		Co	onti	inu	ous	s Cro	own	Fire		Tord	ching		Cc	nti	nu	ous	Cro	wn .	Fire	
FLAME	I ENI #		В	JIL	Dυ	JP I	NDI	EX (BUI)	FLAME	I ENI f4		В	JIL	DU	IP I	NDE	Ξ Χ (BUI))
FLAIVIE	LEIN-IL	10	30	50	70	90	110	130	150	170	FLAIVIE	LEIN-IL	10	30	50	70	90	110	130	150	170
0	2	1	3	3	4	4	4	5	5	5	0	2	1	1	2	2	2	2	2	2	2
SPREAD X (ISI)	4	2	4	5	6	7	7	8	8	8	SPREAD X (ISI)	4	1	3	4	4	4	5	5	5	5
RE S	6	3	6	7	8	9	10	10	10	11	R IS	6	2	4	5	6	7	7	7	8	8
SP (8	3	7	9	10	11	12	12	13	13	SP (8	2	5	7	8	9	9	10	10	10
1.1	10	4	8	10	12	13	14	15	15	16		10	3	7	9	10	11	11	12	12	13
ĕ IJ	12	4	9	12	14		16	17	17	18	ĕ ⅓	12	4	8	10	12	13	14	14	15	15
INITIAL	14	4	10	14	16	17	18	19	19	20	INITIAL	14	4	9	12	14	15	16	17	17	18
	16	5	11	15	17	19	20	20	21	21	=	16	4	10	14	16	17	18	19	19	20

1	18	5	12	16	19	20	21	22	23	23	18	5	11	15	18	19	20	21	21	22
2	20	5	13	18	20	21	23	23	24	25	20	5	13	17	19	21	22	23	23	24
2	22	6	15	19	21	23	24	25	25	26	22	6	14	18	21	22	23	24	25	25
2	24	6	16	20	22	24	25	26	27	27	24	6	15	20	22	24	25	26	27	27
2	26	6	16	21	23	25	26	27	28	28	26	6	17	21	23	25	26	27	28	29
2										30	28	7	17	22	24	26	27	29	29	30
3	30	7	18	22	25	27	28	29	30	31	30	7	18	23	25	27	29	30	31	31

8.3.13 M-3 and M-4 (60% Dead Balsam Fir) Fire Spread and Flame Length Outputs

M-3-60% Dead Balsam Fir Mixedwood-leafless

M-4-60% Dead Balsam Fir

Mixedwood-Green

RC	eawooa 19			BUIL	חוום) INI	DEX	(Bl	ш		RO	9			BUIL	חוום	INI C	DEX	(RI	ш	
ch/		10	30	50 50	70	90		130		170			10	30	50 50	70	90				170
CII/	2	3	6	7	7	8	8	8	8	8	0% ROS, Flar	2	1	1	2	2	2	2	2	2	2
	4	8	16	18	20	20	21	21	21	22		4	2	5	6	6	6	6	7	7	7
S (S	6	13	27	32	34	35	36	37	37	37	S)	6	5	10	12	12	13	13	13	14	14
	8	19	40	46	49	51	52	53	54	54		8	8	16	19	20	21	22	22	22	22
— X	10	25	52	61	65	67	69	70	71	71	<u> </u>	10	11	24	27	29	30	31	31	32	32
9	12	31	65	75	80	83	85	86	87	88	9	12	15	31	36	39	40	41	42	42	43
	14	37	77	89	95	99	101	103	104	105	=	14	19	40	46	49	51	52	53	53	54
A	16	42	89	103	110	114	116		119	121	N N	16	23	48	56	59	61	63	64	64	65
W	18	48	100	116	124	128	131	133	135	136	8	18	27	56	65	70	72	74	<i>7</i> 5	76	76
SPREAD INDEX (ISI)	20	53	111	128	137	142	145	147	149	150	SPREAD INDEX (ISI)	20	31	65	<i>7</i> 5	80	83	85	86	87	88
	22	57	121	140	149	155	158	161	162	164		22	35	73	84	90	93	95	97	98	99
INITIAL	24	62	130	151	161	167	170	173	175	177	NITIAL	24	38	81	94	100	103	106	107	109	109
=	26	66	139	161	172	178	182	185	187	189	 	26	42	88	102	109	113	116	118	119	120
=	28	70	147	171	182	188	193	196	198	200	=	28	46	96	111	118	123	125	127	129	130
	30	74	155	180	191	198	203	206	208	210		30	49	103	119	127	132	135	137	138	140
I	orching		С					n Fii			Т	orching		C	onti	nuo	us C	row	n Fir	е _	
			В	BUIL	DUI	P IN	DEX	(Bl	JI)					Е	BUIL	DUF	P IN	DEX	(Bl	JI)	
FLAME	LEN-ft	10	30	SUIL 50	DUF 70	90	DEX 110	(BU	JI) 150		FLAME	LEN-ft	10	30	SUIL 50	DUF 70	90	DEX 110	(BU 130	JI) 150	
	LEN-ft	10	30 6	50 7	DUF 70 9	90 9	DEX 110 10	(B U 130 10	JI) 150 11	11		LEN-ft	10	30	50 4	DUF 70 4	90 5	DEX 110 5	(BU 130 5	JI) 150 5	6
FLAME	LEN-ft	10 3 4	30 6 9	50 7	70 9	90 90 15	110 10 16	130 10 17	150 11 18	11 18	FLAME	LEN-ft	10 1 2	30 3 5	50 4 7	DUF 70 4 8	90 5 8	110 5 9	(BU 130 5 9	JI) 1 50 5	6 10
FLAME	LEN-ft 2 4 6	10 3 4 5	30 6 9	50 7 12 17	70 9 14 19	90 9 15 20	110 10 16 22	130 10 17 22	JI) 150 11 18 23	11 18 24	FLAME	LEN-ft 2 4 6	10 1 2 3	30 3 5 7	50 4 7 9	DUF 70 4 8 11	90 5 8 12	DEX 110 5 9 13	(BU 130 5 9	150 5 10 14	6 10 14
FLAME	LEN-ft 2 4 6 8	10 3 4 5 6	30 6 9 13 16	50 7 12 17 20	70 9 14 19 23	90 9 15 20 24	110 10 16 22 26	130 10 17 22 27	JI) 150 11 18 23 27	11 18 24 28	FLAME	LEN-ft 2 4 6 8	10 1 2 3 4	30 3 5 7 9	50 4 7 9	DUF 70 4 8 11 14	90 5 8 12 16	110 5 9 13 17	(BU 130 5 9 13 17	JI) 150 5 10 14 18	6 10 14 18
FLAME	LEN-ft 2 4 6 8 10	10 3 4 5 6 7	30 6 9 13 16 19	50 7 12 17 20 23	70 9 14 19 23 26	90 9 15 20 24 28	110 10 16 22 26 29	130 10 17 22 27 30	JI) 150 11 18 23 27 31	11 18 24 28 32	FLAME	LEN-ft 2 4 6 8 10	10 1 2 3 4 5	30 3 5 7 9	50 4 7 9 12 15	70 4 8 11 14 18	90 5 8 12 16 19	110 5 9 13 17 20	(BU 130 5 9 13 17 21	150 5 10 14 18 21	6 10 14 18 22
FLAME	2 4 6 8 10 12	10 3 4 5 6 7 8	30 6 9 13 16 19 21	50 7 12 17 20 23 26	70 9 14 19 23 26 29	9 15 20 24 28 31	10 10 16 22 26 29 32	130 10 17 22 27 30 34	150 11 18 23 27 31 34	11 18 24 28 32 35	FLAME	LEN-ft 2 4 6 8 10 12	10 1 2 3 4 5 6	30 3 5 7 9 11 14	50 4 7 9 12 15 18	70 4 8 11 14 18 20	90 5 8 12 16 19 22	5 9 13 17 20 23	(BU 130 5 9 13 17 21 24	5 10 14 18 21 25	6 10 14 18 22 25
FLAME	LEN-ft 2 4 6 8 10 12 14	10 3 4 5 6 7 8	30 6 9 13 16 19 21 23	50 7 12 17 20 23 26 28	DUF 70 9 14 19 23 26 29 31	9 15 20 24 28 31 33	10 10 16 22 26 29 32 35	130 10 17 22 27 30 34 36	11) 150 11 18 23 27 31 34 37	11 18 24 28 32 35 38	FLAME	LEN-ft 2 4 6 8 10 12 14	10 1 2 3 4 5 6 6	30 3 5 7 9 11 14 16	50 4 7 9 12 15 18 20	70 4 8 11 14 18 20 23	90 5 8 12 16 19 22 24	5 9 13 17 20 23 26	(BU 130 5 9 13 17 21 24 27	150 5 10 14 18 21 25 27	6 10 14 18 22 25 28
FLAME	LEN-ft 2 4 6 8 10 12 14 16	10 3 4 5 6 7 8 8	30 6 9 13 16 19 21 23 24	50 7 12 17 20 23 26 28 30	DUF 70 9 14 19 23 26 29 31 33	9 15 20 24 28 31 33 36	10 10 16 22 26 29 32 35 37	130 10 17 22 27 30 34 36 39	11) 150 11 18 23 27 31 34 37 40	11 18 24 28 32 35 38 41	FLAME	LEN-ft 2 4 6 8 10 12 14 16	10 1 2 3 4 5 6 6 7	30 3 5 7 9 11 14 16 18	50 4 7 9 12 15 18 20 22	70 4 8 11 14 18 20 23 25	90 5 8 12 16 19 22 24 27	110 5 9 13 17 20 23 26 28	(BU 130 5 9 13 17 21 24 27 29	150 5 10 14 18 21 25 27 30	6 10 14 18 22 25 28 31
FLAME	LEN-ft 2 4 6 8 10 12 14 16 18	10 3 4 5 6 7 8 8 9	30 6 9 13 16 19 21 23 24 26	50 7 12 17 20 23 26 28 30 31	DUF 70 9 14 19 23 26 29 31 33 35	90 9 15 20 24 28 31 33 36 38	10 10 16 22 26 29 32 35 37 39	130 10 17 22 27 30 34 36 39 41	150 11 18 23 27 31 34 37 40 42	11 18 24 28 32 35 38 41 43	FLAME	LEN-ft 2 4 6 8 10 12 14 16 18	10 1 2 3 4 5 6 6 7 7	30 3 5 7 9 11 14 16 18 20	50 4 7 9 12 15 18 20 22 24	70 4 8 11 14 18 20 23 25 27	90 5 8 12 16 19 22 24 27 29	110 5 9 13 17 20 23 26 28 30	(BU 130 5 9 13 17 21 24 27 29 31	150 5 10 14 18 21 25 27 30 32	6 10 14 18 22 25 28 31 33
SPREAD INDEX (ISI)	LEN-ft 2 4 6 8 10 12 14 16 18 20	10 3 4 5 6 7 8 8 9 10	30 6 9 13 16 19 21 23 24 26 27	50 7 12 17 20 23 26 28 30 31 33	DUF 70 9 14 19 23 26 29 31 33 35 37	9 9 15 20 24 28 31 33 36 38 39	10 10 16 22 26 29 32 35 37 39 41	130 10 17 22 27 30 34 36 39 41 43	11) 150 11 18 23 27 31 34 37 40 42 44	11 18 24 28 32 35 38 41 43 45	SPREAD INDEX (ISI) BY	LEN-ft 2 4 6 8 10 12 14 16 18 20	10 1 2 3 4 5 6 6 7 7 8	30 3 5 7 9 11 14 16 18 20 21	50 4 7 9 12 15 18 20 22 24 26	70 4 8 11 14 18 20 23 25 27	90 5 8 12 16 19 22 24 27 29 31	110 5 9 13 17 20 23 26 28 30 32	(BU 130 5 9 13 17 21 24 27 29 31 33	150 5 10 14 18 21 25 27 30 32 34	6 10 14 18 22 25 28 31 33 35
SPREAD INDEX (ISI)	LEN-ft 2 4 6 8 10 12 14 16 18 20 22	10 3 4 5 6 7 8 8 9 10 10	30 6 9 13 16 19 21 23 24 26 27 28	50 7 12 17 20 23 26 28 30 31 33 34	DUF 70 9 14 19 23 26 29 31 33 35 37 38	90 9 15 20 24 28 31 33 36 38 39 41	110 10 16 22 26 29 32 35 37 39 41 43	130 10 17 22 27 30 34 36 39 41 43 45	11) 150 11 18 23 27 31 34 37 40 42 44 46	11 18 24 28 32 35 38 41 43 45 47	SPREAD INDEX (ISI) BY	LEN-ft 2 4 6 8 10 12 14 16 18 20 22	10 1 2 3 4 5 6 6 7 7 8 8	30 3 5 7 9 11 14 16 18 20 21 22	50 4 7 9 12 15 18 20 22 24 26 27	70 4 8 11 14 18 20 23 25 27 29 30	90 5 8 12 16 19 22 24 27 29 31 32	110 5 9 13 17 20 23 26 28 30 32 34	(BU 130 5 9 13 17 21 24 27 29 31 33 35	150 5 10 14 18 21 25 27 30 32 34 36	6 10 14 18 22 25 28 31 33 35
SPREAD INDEX (ISI)	LEN-ft 2 4 6 8 10 12 14 16 18 20 22 24	10 3 4 5 6 7 8 8 9 10 10 10	30 6 9 13 16 19 21 23 24 26 27 28 29	50 7 12 17 20 23 26 28 30 31 33 34 35	DUF 70 9 14 19 23 26 29 31 33 35 37 38 39	90 9 15 20 24 28 31 33 36 38 39 41 42	110 10 16 22 26 29 32 35 37 39 41 43 45	130 10 17 22 27 30 34 36 39 41 43 45 46	JI) 150 11 18 23 27 31 34 37 40 42 44 46 47	11 18 24 28 32 35 38 41 43 45 47	SPREAD INDEX (ISI) BY	LEN-ft 2 4 6 8 10 12 14 16 18 20 22 24	10 1 2 3 4 5 6 6 7 7 8 8 9	30 3 5 7 9 11 14 16 18 20 21 22 23	50 4 7 9 12 15 18 20 22 24 26 27 28	70 4 8 11 14 18 20 23 25 27 29 30 32	90 5 8 12 16 19 22 24 27 29 31 32 34	110 5 9 13 17 20 23 26 28 30 32 34 36	(BU 130 5 9 13 17 21 24 27 29 31 33 35 37	150 5 10 14 18 21 25 27 30 32 34 36 38	6 10 14 18 22 25 28 31 33 35 37
FLAME	LEN-ft 2 4 6 8 10 12 14 16 18 20 22 24 26	3 4 5 6 7 8 8 9 10 10 10 13 14	30 6 9 13 16 19 21 23 24 26 27 28 29 30	50 7 12 17 20 23 26 28 30 31 33 34 35 36	70 9 14 19 23 26 29 31 33 35 37 38 39 41	90 9 15 20 24 28 31 33 36 38 39 41 42 44	110 10 16 22 26 29 32 35 37 39 41 43 45 46	130 10 17 22 27 30 34 36 39 41 43 45 46 48	JI) 150 11 18 23 27 31 34 37 40 42 44 46 47 49	11 18 24 28 32 35 38 41 43 45 47 48 50	FLAME	LEN-ft 2 4 6 8 10 12 14 16 18 20 22 24 26	10 1 2 3 4 5 6 6 7 7 8 8 9 9	30 3 5 7 9 11 14 16 18 20 21 22 23 24	50 4 7 9 12 15 18 20 22 24 26 27 28 30	70 4 8 11 14 18 20 23 25 27 29 30 32 33	90 5 8 12 16 19 22 24 27 29 31 32 34 35	DEX 110 5 9 13 17 20 23 26 28 30 32 34 36 37	(BU 130 5 9 13 17 21 24 27 29 31 33 35 37	JI) 150 5 10 14 18 21 25 27 30 32 34 36 38 40	6 10 14 18 22 25 28 31 33 35 37 39 41
SPREAD INDEX (ISI)	LEN-ft 2 4 6 8 10 12 14 16 18 20 22 24	10 3 4 5 6 7 8 8 9 10 10 10	30 6 9 13 16 19 21 23 24 26 27 28 29 30 31	50 7 12 17 20 23 26 28 30 31 33 34 35	DUF 70 9 14 19 23 26 29 31 33 35 37 38 39	90 9 15 20 24 28 31 33 36 38 39 41 42	110 10 16 22 26 29 32 35 37 39 41 43 45	130 10 17 22 27 30 34 36 39 41 43 45 46	JI) 150 11 18 23 27 31 34 37 40 42 44 46 47	11 18 24 28 32 35 38 41 43 45 47	SPREAD INDEX (ISI) BY	LEN-ft 2 4 6 8 10 12 14 16 18 20 22 24	10 1 2 3 4 5 6 6 7 7 8 8 9	30 3 5 7 9 11 14 16 18 20 21 22 23	50 4 7 9 12 15 18 20 22 24 26 27 28	70 4 8 11 14 18 20 23 25 27 29 30 32	90 5 8 12 16 19 22 24 27 29 31 32 34	110 5 9 13 17 20 23 26 28 30 32 34 36	(BU 130 5 9 13 17 21 24 27 29 31 33 35 37	150 5 10 14 18 21 25 27 30 32 34 36 38	6 10 14 18 22 25 28 31 33 35 37

8.3.14 M-3 and M-4 (100% Dead Balsam Fir) Fire Spread and Flame Length Outputs

M-3-100% Dead Balsam Fir Mixedwood-leafless

M-4-100% Dead Balsam Fir Mixedwood-Green

	ROS	3		В	UILI	DUP	INE	DEX	(BU	II)		RC	S		В	UIL	DUF	P IN	DEX	(Bl	JI)	
	ch/h	ır	10	30	50	70	90	110	130	150	170	ch/	'hr	10	30	50	70	90	110	130	150	170
		2	7	14	16	17	18	18	18	19	19		2	3	6	7	7	8	8	8	8	8
		4	16	34	39	42	43	44	45	45	46		4	7	15	18	19	20	20	21	21	21
<u>S</u>		6	26	55	64	68	70	72	73	74	<i>7</i> 5	(ISI)	6	13	27	31	33	34	35	35	36	36
×		8	36	76	88	94	98	100	101	103	103	×	8	18	38	45	48	49	50	51	52	52
SPREAD INDEX (ISI)		10	46	97	112	120	124	127	129	130	131	SPREAD INDEX	10	24	51	59	62	65	66	67	68	69
Z		12	55	116	135	144	149	152	154	<i>156</i>	158	Z	12	30	63	<i>7</i> 3	77	80	82	83	84	<i>8</i> 5
		14	64	134	156	166	172	176	179	181	182		14	35	74	86	92	95	98	99	100	101
≰		16	72	151	175	187	193	198	201	203	205	 	16	41	86	100	106	110	113	114	116	117
<u> </u>		18	<i>7</i> 9			206						2	18	46	97	113	120	124	127	129	131	132
S		20	86	180	209	223	231	236	240	243	245	S	20	51	108		133	138	141	143	145	146
		22	92	193	224	239	248	253	257	260	262		22	56	118	137	146	151	154	157	158	160
INITIAL		24	97	205	238	253	263	269	273	276	278	NITIAL	24	60	127	148	157	163	167	169	171	173
=		26	102	215	250	266	276	282	287	290	293		26	65	136	<i>158</i>	168	175	179	181	183	185
=		28	107	225	261	278	288	295	<i>300</i>	<i>303</i>	306	_	28	69	145	168	179	185	190	193	195	197
		30									317		30		<i>153</i>	177	189	196	200	203	206	207
		orching	1			านอน							orching			ontii						
FLA		_GTH-				DUP						FLAME		_		UIL						
	ft		10	30	50	70	90				170	ft		10	30	50	70		110			
		2	4	8	11	13	14	15	16	16	17		2	3	6	7	8	9	10	10	11	11
	、	4	6	15	19	21	23	24	25	25	26	_	4	4	9	12	14	15	16	17	17	18
<u>S</u>		6	7	19	24	26	28	30	31	32	33	(ISI)	6	5	12	16	19	20	21	22	23	23
DEX (ISI)		8	8	23	28	31	33	35	36	37	38	×	8	6	16	20	22	24	25	26	27	28
		10	9	25	31	34	37	39	40	41	42		10	7	18	23	25	27	29	30	31	31
Tables 8.	14-1,	12	10	28	33	37	40	42	44	45	46	Z	12	8	21	25	28	30	32	33	34	35
100% R@		14	13	29	36	40	43	45	47	48	49	۵	14	8	22	27	30	33	34	36	37	38
✓		16	16	31	38	42	45	48	49	51	52	₩	16	9	24	29	33	35	37	38	39	40
Ш				_										_							4.4	12
RE		18	17	32	40	44	47	50	52	53	54	2	18	9	25	31	34	37	39	40	41	42
SPREA		20	17 18	34	40 41	44 46	49	52	54	55	56	SPREAD INDEX	20	10	27	32	36	39	41	42	44	44
		20 22	17 18 19	34 35	40 41 42	44 46 47	49 51	52 53	54 55	55 57	56 58		20 22	10 10	27 28	32 34	36 38	39 40	41 43	42 44	44 45	44 46
		20 22 24	17 18 19 20	34 35 36	40 41 42 43	44 46 47 49	49 51 52	52 53 55	54 55 57	55 57 59	56 58 60		20 22 24	10 10 12	27 28 29	32 34 35	36 38 39	39 40 42	41 43 44	42 44 46	44 45 47	44 46 48
		20 22 24 26	17 18 19 20 20	34 35 36 37	40 41 42 43 45	44 46 47 49 50	49 51 52 53	52 53 55 56	54 55 57 58	55 57 59 60	56 58 60 61		20 22 24 26	10 10 12 14	27 28 29 30	32 34 35 36	36 38 39 40	39 40 42 43	41 43 44 46	42 44 46 47	44 45 47 49	44 46 48 50
INITIAL SPRE		20 22 24	17 18 19 20	34 35 36	40 41 42 43	44 46 47 49	49 51 52	52 53 55	54 55 57	55 57 59	56 58 60	INITIAL SPR	20 22 24	10 10 12	27 28 29	32 34 35	36 38 39	39 40 42	41 43 44	42 44 46	44 45 47	44 46 48

8.3.15 S-1 and S-2 Fire Spread and Flame Length Outputs

S-1 Jack Pine Slash

S-2 White Spruce/Balsam Slash Tables 8.3.15-1, 8.3.15-2 S-1 ROS, Flame length

RO	S		Е	BUIL	DUF	P IN	DEX	(Bl	JI)		RC	S		Вι	JIL	DU	JP I	INDI	EX (BUI)
ch/	hr	10	30	50	70	90	110	130	150	170	ch/	hr hr	10	30	50	70	90	110	130	150	170
	2	2	5	6	7	7	7	7	7	7		2	1	1	2	2	2	2	2	2	2
AD	4	5	12	14	15	16	17	17	17	17	ð	4	2	4	5	6	6	6	6	6	6
ш 🗀	6	7	19	23	25	26	27	28	28	28	3 6	6	3	8	9	10	11	11	11	11	11
PRI (IS	8	10	27	33	35	37	38	39	39	40	PRI (IS	8	5	12	14	15	16	17	17	17	17
S X	10	13	35	42	46	48	49	50	51	51	\overline{\cute{N}} \times \t	10	6	16	19	21	22	23	23	23	24
AL DE	12	16	42	51	56	58	60	61	62	63	AL IDE	12	8	20	25	27	28	29	29	30	30
ĮĖ≅	14	19	50	60	66	69	71	72	73	74	È≅	14	9	25	30	32	34	35	36	36	37
Z	16	22	57	69	75	79	81	83	84	85	Z	16	11	29	35	38	40	41	42	43	43
	18	25	64	78	85	89	91	93	94	95		18	13	33	40	44	46	47	48	49	49

	20	27	71	86	94	98	101	103	105	106		20	14	37	45	49	51	53	54	55	55
	22	30	78	94	102	107	110	113	114	116		22	16	41	50	54	57	58	59	60	61
	24	32	84	102	111	116	119	122	124	125		24	17	45	54	59	62	63	65	66	66
	26	35	90	109	119	124		131	133			26				63		68	70	71	72
	28	37	96	117		132			141			28				68		73	74	76	76
	30	39	102	123	134	140	144	147	149	151		30				72		77	79	80	81
														l							
	. = \ .		Е	BUIL	DUF	P IN	DEX	(Bl	JI)			. = > 1 64		Вι	JIL	DU	IP I	NDI	EX (BUI))
FLAME	LEN-ft	10	30	50	70	90		_	150	170	FLAME	LEN-ft	10						_	150	
	2	4	9	11	12	13	13	14	14	14		2	3	7	8	9	9	10	10	10	10
	4	6	13	17	18	19	20	20	20	21		4	5	11	13		15	16	16	17	17
(ISI)	6	7	17	21	23	24	25	25	25	26	(ISI)	6	7	14	17		20	21	22	22	23
	8	9	20	24	27	28	29	29	30	30		8	8	17	21	23		26	26	27	27
Û	10	10	22	27	30	31	32	33	33	34	Û	10	9	20		27		30	30	31	32
9	12	11	24	30	33	35	36	36	37	37		12	10	22		30		33	34	35	35
=	14	11	26	32	35	37	38	39	39	40	=	14	11			33		36	37	38	39
A	16	12	28	34	38	40	41	42	42	42	A	16	12			35		39	40	41	41
SPREAD INDEX	18	13	29	36	40	42	43	44	44	45	SPREAD INDEX	18				38		41	43	43	44
l G	20	14	31	38	42	44	45	46	47	47) PI	20	-			40		44	45	46	47
	22	14	32	40	43	46	47	48	49	49		22	_			41		46	47	48	49
INITIAL	24	15	33	41	45	47	49	50	50	51	INITIAL	24				43		48	49	50	51
 	26	15	34	42	47	49	50	51	52	52	 	26				45		49	51	52	52
_	28	16	35	44	48	50	52	53	53	54	_	28	-				49	51	52	53	54
	30	16	36	45	49	52	53	54	55	55		30	_				50	52	54	55	55
				_	_			-			1		_			1		-	-		

8.3.16 S-3 Fire Spread and Flame Length Outputs

S-3 Coastal Cedar / Hemlock - Douglas-fir Slash

R	os			BU	ILDU	P IND	EX (B	BUI)		
ch	n/hr	10	30	50	70	90	110	130	150	170
	2	<1	<1	1	1	1	1	1	1	1
	4	1	3	3	4	4	4	4	4	4
(ISI)	6	3	8	10	11	11	11	12	12	12
×	8	6	16	19	21	22	23	23	23	24
Œ	10	10	26	31	34	36	37	37	38	38
INDEX	12	14	37	45	49	51	52	53	54	55
	14	19	49	59	64	67	69	70	71	72
EAD	16	23	60	73	79	83	85	87	88	89
SPRE,	18	27	72	87	94	98	101	103	105	106
SP	20	32	82	100	108	113	116	119	121	122
	22	35	92	111	121	127	130	133	135	137
₹	24	39	101	122	133	139	143	146	148	150
INITIAL	26	42	109	132	143	150	154	158	160	162
=	28	45	116	141	153	160	165	168	170	172
	30	47	122	148	161	168	173	177	180	182
FL	AME			BU	ILDU	P IND	EX (B	BUI)		
LE	N-ft	10	30	50	70	90	110	130	150	170
	2	2	5	6	7	7	8	8	8	8
EAD	4	5	11	15	17	18	19	19	20	20
ј Ш :	6	8	19	24	27	29	30	31	32	32

Table 8.3.16-1 S-3 ROS

Table 8.3.16-2 S-3 Flame length

8	11	25	32	37	39	41	42	43	44
10	13	32	40	46	49	51	53	54	55
12	16	37	48	54	58	61	62	64	65
14	18	42	54	61	66	69	71	72	73
16	20	47	60	68	72	76	78	80	81
18	21	51	65	73	78	82	85	86	88
20	23	54	69	78	84	87	90	92	93
22	24	57	73	82	88	92	95	97	98
24	25	59	76	86	92	96	99	101	103
26	26	61	78	89	95	100	103	105	106
28	27	63	81	91	98	103	106	108	109
30	27	65	83	94	100	105	108	110	112

			O-1a	a-Mat	ted G	rass						O-1k	o-Stan	ding (Grass		
	RO.				gree					RO					of Cur		
5	ch/l		50%	60%		80%		100%		ch/l		50%	60%	70%	80%	90%	100%
-		2	1	2	4	7	9	11			2	1	2	3	5	6	8
	Ē	4	3	6	11	16	22	27		ũ	4	2	5	9	14	19	23
	INDEX	6	5	9	19	28	37	47		INITIAL SPREAD INDEX	6	4	9	18	26	35	44
		8	7	13	27	40	54	67		٦	8	7	14	27	41	54	68
	SPREAD	10	9	18	35	53	70	88		EA	10	10	19	38	56	75	94
	PR	12	11	22	44	65	87	109		PR	12	12	24	48	73	97	121
		14	13	26	52	78	104	130		L S	14	15	30	60	89	119	149
	NITIAL	16	15	30	60	91	121	151		I ĕ	16	18	35	71	106	141	177
	Ē	18	18	34	68	103	137	171		Ē	18	21	41	82	123	164	205
	_	20	20	38	76	115	153	191			20	24	46	93	139	186	232
•	Flan	ne		De	gree	of Cu	rina	1		Flan	ne		De	aree	of Cur	ina	
	Lengt		50%			80%		100%	AD	Leng		50%	60%	70%	80%	90%	100%
ŀ	Lenge	2	1	2	2	3	3	3	Ó	Lengi	2	1	1	2	2	3	3
	×	4	2	2	3	4	4	5	7	×	4	2	2	3	4	4	5
	DE	6	2	3	4	5	6	6	EL	<u> </u>	6	2	3	4	5	6	6
	=	8	3	4	5	6	7	7	FUI	=	8	3	4	5	6	7	7
-	SPREAD INDEX	10	3	4	6	7	8	8	_	NITIAL SPREAD INDEX	10	3	4	6	7	8	9
	RE	12	3	4	6	7	8	9	C	RE	12	3	5	6	8	9	10
	SP	14	3	5	7	8	9	10	TON/A	SP	14	4	5	7	8	10	11
	AL	16	4	5	7	9	10	11	<u> </u>	AL	16	4	6	8	9	10	12
	NITIAL	18	4	5	7	9	10	11	7	E	18	4	6	<u> </u>	10	11	12
	2	20	4	6	8	9	11	12	1	=	20	5	6	9	10	12	13
ŀ	Flan		4	_	gree	_		12		Flan		5	_		of Cur		13
	Lengt		E00/					100%	Q			50%	60%	70%	80%	90%	100%
ŀ	Lengt	2		2	3			4	OA	Leng				3	3	3	
	×	4	2	3	4	4 5	6	7	7	×	4	2	3	4	5	6	6
	DE	-							7	DE	-				7		
	READ INDEX	6	3	4	6	7	8	9	FUE	READ INDEX	6	3	4	6 7		8	8
	AD	8	4	5 6	7	8	9	10 12		AD	8	4	5		8	9 11	10
		10	4		8	9	10		C		10	-	6	8	9		12
	NITIAL SP	12	4	6	8	10	12	13	A	INITIAL SPI	12	5	6	9	11	12	13
	AL	14	5	7	9	11	12	14	X	AL	14	5	7	10	12	13	15
	E	16	5	7	10	12	13	15	TON/A	E	16	6	8	10	13	14	16
	Z	18	5	7	10	12	14	16	2	Z	18	6	8	11	13	15	17
	_	20	6	8	11	13	15	16			20	6	9	12	14 of Cur	16	18
				D						⊢lar			1 16	aree	OT CILI	'ina	
	Flan	ne	EAC!		gree			40007	P	, , ,	ne	EAC/					4000/
l	Flan Lengt	th-ft		60%	70%	80%	90%		DAC	Leng	th-ft		60%	70%	80%	90%	100%
	Lengt	th-ft 2	2	60%	70%	80% 4	90% 5	5	LOAD	Leng	th-ft 2	2	60% 2	70%	80%	90% 4	5
	Lengt	th-ft 2 4	2	60% 3 4	70% 4 5	80% 4 6	90% 5 7	5 8	LOA	Leng	th-ft 2 4	2 3	60% 2 4	70% 3 5	80% 4 6	90% 4 7	5 8
	Lengt	th-ft 2 4 6	2 3 4	60% 3 4 5	70% 4 5 7	80% 4 6 8	90% 5 7 9	5 8 10	LOA	Leng	th-ft 2 4 6	2 3 4	60% 2 4 5	70% 3 5 7	80% 4 6 8	90% 4 7 9	5 8 10
	Lengt	th-ft 2 4 6 8	2 3 4 4	3 4 5 6	70% 4 5 7 8	80% 4 6 8 10	5 7 9 11	5 8 10 12	LOA	Leng	th-ft 2 4 6 8	2 3 4 4	60% 2 4 5 6	70% 3 5 7 8	80% 4 6 8 10	90% 4 7 9 11	5 8 10 12
	Lengt	th-ft 2 4 6 8 10	2 3 4 4 5	3 4 5 6 7	70% 4 5 7 8 9	80% 4 6 8 10 11	90% 5 7 9 11 13	5 8 10 12 14	FUEL LOA	Leng	th-ft 2 4 6 8 10	2 3 4 4 5	2 4 5 6 7	70% 3 5 7 8 9	80% 4 6 8 10 11	90% 4 7 9 11 13	5 8 10 12 14
	Lengt	th-ft 2 4 6 8 10 12	2 3 4 4 5 5	60% 3 4 5 6 7	70% 4 5 7 8 9 10	80% 4 6 8 10 11 12	90% 5 7 9 11 13 14	5 8 10 12 14 15	FUEL LOA	Leng	th-ft 2 4 6 8 10 12	2 3 4 4 5 6	60% 2 4 5 6 7 8	70% 3 5 7 8 9 11	80% 4 6 8 10 11	90% 4 7 9 11 13 15	5 8 10 12 14 16
D	Lengt	th-ft 2 4 6 8 10 12	2 3 4 4 5 5 6	60% 3 4 5 6 7 7	70% 4 5 7 8 9 10	80% 4 6 8 10 11 12 13	90% 5 7 9 11 13 14 15	5 8 10 12 14 15 17	FUEL LOA	Leng	th-ft 2 4 6 8 10 12	2 3 4 4 5 6	60% 2 4 5 6 7 8 8	70% 3 5 7 8 9 11	80% 4 6 8 10 11 13 14	90% 4 7 9 11 13 15 16	5 8 10 12 14 16 18
	Lengt	th-ft 2 4 6 8 10 12 14	2 3 4 4 5 5 6	60% 3 4 5 6 7 7 8 9	70% 4 5 7 8 9 10 11	80% 4 6 8 10 11 12 13 14	90% 5 7 9 11 13 14 15 16	5 8 10 12 14 15 17	FUEL LOA	Leng	th-ft 2 4 6 8 10 12 14	2 3 4 4 5 6 6 7	60% 2 4 5 6 7 8 8	70% 3 5 7 8 9 11 12 13	80% 4 6 8 10 11 13 14 15	90% 4 7 9 11 13 15 16 17	5 8 10 12 14 16 18 19
ŀ	INITIAL SPREAD INDEX	th-ft 2 4 6 8 10 12	2 3 4 4 5 5 6	60% 3 4 5 6 7 7	70% 4 5 7 8 9 10	80% 4 6 8 10 11 12 13	90% 5 7 9 11 13 14 15	5 8 10 12 14 15 17	LOA	INITIAL SPREAD INDEX	th-ft 2 4 6 8 10 12	2 3 4 4 5 6	60% 2 4 5 6 7 8 8	70% 3 5 7 8 9 11	80% 4 6 8 10 11 13 14	90% 4 7 9 11 13 15 16	5 8 10 12 14 16 18

8.3.18	Fire A	rea and	l Per	imetei	r for	She	ltered	Fuels	s (C, I	M, D,	S)
							147		. /:		

						Effec	tive W	indspe	ed (in	Miles	oer Ho	ır): Ev	e Level	(EL)			
	10	Meter	1	3	5	6	8	9	11	12	14	15	18	21	24	27	30
		Open	1	2	3	4	5	6	7	8	9	10	11	13	15	17	19
				1				В	urned		n Acre						
		5	2	2	1	1	1	1	1	1	1	1	1	0	0	0	0
		10	8	7	6	5	5	4	3	3	3	3	2	2	2	1	1
		15	17	16	13	12	10	9	8	7	6	6	5	4	4	3	3
		20	31	28	24	22	18	16	14	13	11	10	9	7	6	6	5
"		25	49	44	37	34	28	26	22	20	17	16	13	11	10	9	8
neis	(9	30	70	63	54	49	41	37	31	29	25	23	19	17	15	13	12
þ	ins	35	95	86	73	67	55	50	42	39	34	31	26	22	20	18	16
tere	ha	40	124	113	96	87	72	66	55	51	44	41	34	29	26	23	21
hel	Distance (in chains)	45	157	143	121	110	91	83	70	64	55	52	43	37	33	30	27
or s	(ir	50	194	176	150	136	113	103	86	79	68	64	53	46	40	36	33
ea f	ce	55	235	213	181	165	136	124	104	96	83	77	64	55	49	44	40
ar	an	60	279	254	215	196	162	148	124	114	98	92	77	66	58	53	48
Fire	ist	65	328	298	253	230	190	173	146	134	116	108	90	78	68	62	56
7.7	۱۵	70	380	345	293	267	221	201	169	156	134	125	104	90	79	71	66
Table 8.3.18-1 Fire area for sheltered fuels	Total Spread	75	437	396	337	307	253	231	194	179	154	144	120	103	91	82	75
∞ ∞	ıre	80	497	451	383	349	288	263	221	203	175	164	136	117	104	93	86
aple	SF	85	561	509	432	394	325	297	249	230	198	185	154	133	117	105	97
ř	tal	90	629	571	485	441	365	333	279	257	222	207	173	149	131	118	108
	Γοί	95	700	636	540	492	407	370	311	287	247	231	192	166	146	132	121
	•	100	776	704	598	545	450	411	345	318	274	256	213	183	162	146	134
		150	1746	1585	1346	1226	1014	924	775	715	616	575	480	413	364	328	301
		200	3105	2818	2393	2180	1802	1642	1378	1271	1094	1022	853	734	648	584	535
		250	4851	4402	3739	3407	2816	2566	2154	1985	1710	1597	1332	1147	1012	912	836
		300	6985	6340	5384	4905	4054	3695	3101	2859	2462	2300	1919	1651	1457	1313	1203
					l												
								Fireli	ne Per	imeter	(in Ch	ains)					
		5	16	15	14	13	13	Fireli 12	ne Per	imeter 12	(in Ch	ains)	11	11	10	10	10
		5 10	16 31	15 30	14 28	13 27	13 25				_		11 22	11 21	10 21	10 21	10 21
								12	12	12	11	11					
		10	31	30	28	27	25	12 25	12 23	12 23	11 22	11 22	22	21	21	21	21
		10 15	31 47	30 45	28 42	27 40	25 38	12 25 37	12 23 35	12 23 35	11 22 34	11 22 33	22 32	21 32	21 31	21 31	21 31
	s)	10 15 20 25	31 47 62	30 45 60	28 42 56	27 40 54	25 38 50	12 25 37 49	12 23 35 47	12 23 35 46	11 22 34 45	11 22 33 44	22 32 43	21 32 42	21 31 42	21 31 42	21 31 41
ıels	ins)	10 15 20	31 47 62 78	30 45 60 75	28 42 56 69	27 40 54 67	25 38 50 63	12 25 37 49 61	12 23 35 47 59	12 23 35 46 58	11 22 34 45 56	11 22 33 44 55	22 32 43 54	21 32 42 53	21 31 42 52	21 31 42 52	21 31 41 52
d fuels	:hains)	10 15 20 25 30	31 47 62 78 94	30 45 60 75 89	28 42 56 69 83	27 40 54 67 80	25 38 50 63 76	12 25 37 49 61 74	12 23 35 47 59 70	12 23 35 46 58 69	11 22 34 45 56 67	11 22 33 44 55 67	22 32 43 54 65	21 32 42 53 64	21 31 42 52 63	21 31 42 52 62	21 31 41 52 62
ered fuels	n chains)	10 15 20 25 30 35	31 47 62 78 94 109	30 45 60 75 89 104	28 42 56 69 83 97	27 40 54 67 80 94	25 38 50 63 76 88	12 25 37 49 61 74 86	12 23 35 47 59 70 82	12 23 35 46 58 69 81	11 22 34 45 56 67 78	11 22 33 44 55 67 78	22 32 43 54 65 76	21 32 42 53 64 74	21 31 42 52 63 73	21 31 42 52 62 73	21 31 41 52 62 72
neltered fuels	(in chains)	10 15 20 25 30 35 40	31 47 62 78 94 109 125	30 45 60 75 89 104 119	28 42 56 69 83 97 111	27 40 54 67 80 94 107	25 38 50 63 76 88 101	12 25 37 49 61 74 86 98	12 23 35 47 59 70 82 94	12 23 35 46 58 69 81 92	11 22 34 45 56 67 78 90	11 22 33 44 55 67 78 89	22 32 43 54 65 76 86	21 32 42 53 64 74 85	21 31 42 52 63 73 84	21 31 42 52 62 73 83	21 31 41 52 62 72 83
or sheltered fuels	ıce (in chains)	10 15 20 25 30 35 40 45	31 47 62 78 94 109 125 141	30 45 60 75 89 104 119	28 42 56 69 83 97 111 125	27 40 54 67 80 94 107	25 38 50 63 76 88 101 113	12 25 37 49 61 74 86 98 110	12 23 35 47 59 70 82 94 106	12 23 35 46 58 69 81 92 104	11 22 34 45 56 67 78 90 101	11 22 33 44 55 67 78 89 100	22 32 43 54 65 76 86 97	21 32 42 53 64 74 85 96	21 31 42 52 63 73 84 94	21 31 42 52 62 73 83 94	21 31 41 52 62 72 83 93
er for sheltered fuels	tance (in chains)	10 15 20 25 30 35 40 45 50	31 47 62 78 94 109 125 141 156	30 45 60 75 89 104 119 134 149	28 42 56 69 83 97 111 125 139	27 40 54 67 80 94 107 121 134	25 38 50 63 76 88 101 113 126	12 25 37 49 61 74 86 98 110	12 23 35 47 59 70 82 94 106 117	12 23 35 46 58 69 81 92 104 115	11 22 34 45 56 67 78 90 101	11 22 33 44 55 67 78 89 100	22 32 43 54 65 76 86 97 108	21 32 42 53 64 74 85 96 106	21 31 42 52 63 73 84 94 105	21 31 42 52 62 73 83 94 104	21 31 41 52 62 72 83 93 103
neter for sheltered fuels	listance (in chains)	10 15 20 25 30 35 40 45 50	31 47 62 78 94 109 125 141 156	30 45 60 75 89 104 119 134 149	28 42 56 69 83 97 111 125 139	27 40 54 67 80 94 107 121 134 148	25 38 50 63 76 88 101 113 126	12 25 37 49 61 74 86 98 110 123	12 23 35 47 59 70 82 94 106 117 129	12 23 35 46 58 69 81 92 104 115 127	11 22 34 45 56 67 78 90 101 112 123	11 22 33 44 55 67 78 89 100 111	22 32 43 54 65 76 86 97 108 119	21 32 42 53 64 74 85 96 106	21 31 42 52 63 73 84 94 105	21 31 42 52 62 73 83 94 104 115	21 31 41 52 62 72 83 93 103 114
erimeter for sheltered fuels	d Distance (in chains)	10 15 20 25 30 35 40 45 50 55 60	31 47 62 78 94 109 125 141 156 172	30 45 60 75 89 104 119 134 149 164 179	28 42 56 69 83 97 111 125 139 153	27 40 54 67 80 94 107 121 134 148	25 38 50 63 76 88 101 113 126 138	12 25 37 49 61 74 86 98 110 123 135	12 23 35 47 59 70 82 94 106 117 129	12 23 35 46 58 69 81 92 104 115 127	11 22 34 45 56 67 78 90 101 112 123 134	11 22 33 44 55 67 78 89 100 111 122	22 32 43 54 65 76 86 97 108 119	21 32 42 53 64 74 85 96 106 117	21 31 42 52 63 73 84 94 105 115	21 31 42 52 62 73 83 94 104 115	21 31 41 52 62 72 83 93 103 114 124
e perimeter for sheltered fuels	ead Distance (in chains)	10 15 20 25 30 35 40 45 50 55 60 65	31 47 62 78 94 109 125 141 156 172 187 203	30 45 60 75 89 104 119 134 149 164 179	28 42 56 69 83 97 111 125 139 153 167 181	27 40 54 67 80 94 107 121 134 148 161 174	25 38 50 63 76 88 101 113 126 138 151	12 25 37 49 61 74 86 98 110 123 135 147	12 23 35 47 59 70 82 94 106 117 129 141 152	12 23 35 46 58 69 81 92 104 115 127 138 150	11 22 34 45 56 67 78 90 101 112 123 134 146	11 22 33 44 55 67 78 89 100 111 122 133 144	22 32 43 54 65 76 86 97 108 119 130	21 32 42 53 64 74 85 96 106 117 127	21 31 42 52 63 73 84 94 105 115 126	21 31 42 52 62 73 83 94 104 115 125	21 31 41 52 62 72 83 93 103 114 124 135
Fir3e perimeter for sheltered fuels	pread Distance (in chains)	10 15 20 25 30 35 40 45 50 55 60 65 70	31 47 62 78 94 109 125 141 156 172 187 203 219	30 45 60 75 89 104 119 134 149 164 179 194 209	28 42 56 69 83 97 111 125 139 153 167 181	27 40 54 67 80 94 107 121 134 148 161 174	25 38 50 63 76 88 101 113 126 138 151 164 176	12 25 37 49 61 74 86 98 110 123 135 147 159	12 23 35 47 59 70 82 94 106 117 129 141 152	12 23 35 46 58 69 81 92 104 115 127 138 150	11 22 34 45 56 67 78 90 101 112 123 134 146	11 22 33 44 55 67 78 89 100 111 122 133 144	22 32 43 54 65 76 86 97 108 119 130 140	21 32 42 53 64 74 85 96 106 117 127 138 149	21 31 42 52 63 73 84 94 105 115 126 136	21 31 42 52 62 73 83 94 104 115 125 135	21 31 41 52 62 72 83 93 103 114 124 135 145
-2 Fir3e perimeter for sheltered fuels	l Spread Distance (in chains)	10 15 20 25 30 35 40 45 50 55 60 65 70	31 47 62 78 94 109 125 141 156 172 187 203 219 234	30 45 60 75 89 104 119 134 149 164 179 194 209	28 42 56 69 83 97 111 125 139 153 167 181 195 208	27 40 54 67 80 94 107 121 134 148 161 174 188 201	25 38 50 63 76 88 101 113 126 138 151 164 176 189	12 25 37 49 61 74 86 98 110 123 135 147 159 172	12 23 35 47 59 70 82 94 106 117 129 141 152 164 176	12 23 35 46 58 69 81 92 104 115 127 138 150 161 173	11 22 34 45 56 67 78 90 101 112 123 134 146 157 168	11 22 33 44 55 67 78 89 100 111 122 133 144 155	22 32 43 54 65 76 86 97 108 119 130 140 151	21 32 42 53 64 74 85 96 106 117 127 138 149 159	21 31 42 52 63 73 84 94 105 115 126 136 147	21 31 42 52 62 73 83 94 104 115 125 135 146	21 31 41 52 62 72 83 93 103 114 124 135 145
3.18-2 Fir3e perimeter for sheltered fuels	otal Spread Distance (in chains)	10 15 20 25 30 35 40 45 50 55 60 65 70 75 80	31 47 62 78 94 109 125 141 156 172 187 203 219 234 250	30 45 60 75 89 104 119 134 149 164 179 194 209 224 239	28 42 56 69 83 97 111 125 139 153 167 181 195 208	27 40 54 67 80 94 107 121 134 148 161 174 188 201 215	25 38 50 63 76 88 101 113 126 138 151 164 176 189 201	12 25 37 49 61 74 86 98 110 123 135 147 159 172 184	12 23 35 47 59 70 82 94 106 117 129 141 152 164 176	12 23 35 46 58 69 81 92 104 115 127 138 150 161 173	11 22 34 45 56 67 78 90 101 112 123 134 146 157 168	11 22 33 44 55 67 78 89 100 111 122 133 144 155 166	22 32 43 54 65 76 86 97 108 119 130 140 151 162 173	21 32 42 53 64 74 85 96 106 117 127 138 149 159	21 31 42 52 63 73 84 94 105 115 126 136 147 157	21 31 42 52 62 73 83 94 104 115 125 135 146 156	21 31 41 52 62 72 83 93 103 114 124 135 145 155 166
8.3.18-2 Fir3e perimeter for sheltered fuels	Total Spread Distance (in chains)	10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85	31 47 62 78 94 109 125 141 156 172 187 203 219 234 250 265	30 45 60 75 89 104 119 134 149 164 179 194 209 224 239 253	28 42 56 69 83 97 111 125 139 153 167 181 195 208 222	27 40 54 67 80 94 107 121 134 148 161 174 188 201 215	25 38 50 63 76 88 101 113 126 138 151 164 176 189 201 214	12 25 37 49 61 74 86 98 110 123 135 147 159 172 184 196 208	12 23 35 47 59 70 82 94 106 117 129 141 152 164 176 188	12 23 35 46 58 69 81 92 104 115 127 138 150 161 173 184 196	11 22 34 45 56 67 78 90 101 112 123 134 146 157 168 179	11 22 33 44 55 67 78 89 100 111 122 133 144 155 166 177	22 32 43 54 65 76 86 97 108 119 130 140 151 162 173 184	21 32 42 53 64 74 85 96 106 117 127 138 149 159 170	21 31 42 52 63 73 84 94 105 115 126 136 147 157 168	21 31 42 52 62 73 83 94 104 115 125 135 146 156 167	21 31 41 52 62 72 83 93 103 114 124 135 145 155 166 176
ible 8.3.18-2 Fir3e perimeter for sheltered fuels	Total Spread Distance (in chains)	10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95	31 47 62 78 94 109 125 141 156 172 187 203 219 234 250 265 281	30 45 60 75 89 104 119 134 149 164 179 194 209 224 239 253 268	28 42 56 69 83 97 111 125 139 153 167 181 195 208 222 236 250	27 40 54 67 80 94 107 121 134 148 161 174 188 201 215 228 241	25 38 50 63 76 88 101 113 126 138 151 164 176 189 201 214 227	12 25 37 49 61 74 86 98 110 123 135 147 159 172 184 196 208 221	12 23 35 47 59 70 82 94 106 117 129 141 152 164 176 188 199 211	12 23 35 46 58 69 81 92 104 115 127 138 150 161 173 184 196 207	11 22 34 45 56 67 78 90 101 112 123 134 146 157 168 179 191	11 22 33 44 55 67 78 89 100 111 122 133 144 155 166 177 188 200	22 32 43 54 65 76 86 97 108 119 130 140 151 162 173 184 195	21 32 42 53 64 74 85 96 106 117 127 138 149 159 170 181	21 31 42 52 63 73 84 94 105 115 126 136 147 157 168 178	21 31 42 52 62 73 83 94 104 115 125 135 146 156 167 177	21 31 41 52 62 72 83 93 103 114 124 135 145 155 166 176 186
Table 8.3.18-2 Fir3e perimeter for sheltered fuels	Total Spread Distance (in chains)	10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90	31 47 62 78 94 109 125 141 156 172 187 203 219 234 250 265 281	30 45 60 75 89 104 119 134 149 164 179 194 209 224 239 253 268 283	28 42 56 69 83 97 111 125 139 153 167 181 195 208 222 236 250 264	27 40 54 67 80 94 107 121 134 148 161 174 188 201 215 228 241	25 38 50 63 76 88 101 113 126 138 151 164 176 189 201 214 227 239	12 25 37 49 61 74 86 98 110 123 135 147 159 172 184 196 208 221 233	12 23 35 47 59 70 82 94 106 117 129 141 152 164 176 188 199 211	12 23 35 46 58 69 81 92 104 115 127 138 150 161 173 184 196 207 219	11 22 34 45 56 67 78 90 101 112 123 134 146 157 168 179 191 202 213	11 22 33 44 55 67 78 89 100 111 122 133 144 155 166 177 188 200 211	22 32 43 54 65 76 86 97 108 119 130 140 151 162 173 184 195 205	21 32 42 53 64 74 85 96 106 117 127 138 149 159 170 181 191 202	21 31 42 52 63 73 84 94 105 115 126 136 147 157 168 178 189	21 31 42 52 62 73 83 94 104 115 125 135 146 156 167 177 187	21 31 41 52 62 72 83 93 103 114 124 135 145 155 166 176 186 197
Table 8.3.18-2 Fir3e perimeter for sheltered fuels	Total Spread Distance (in chains)	10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 150 200	31 47 62 78 94 109 125 141 156 172 187 203 219 234 250 265 281 297 312	30 45 60 75 89 104 119 134 149 164 179 194 209 224 239 253 268 283 298	28 42 56 69 83 97 111 125 139 153 167 181 195 208 222 236 250 264 278	27 40 54 67 80 94 107 121 134 148 161 174 188 201 215 228 241 255 268	25 38 50 63 76 88 101 113 126 138 151 164 176 189 201 214 227 239 252	12 25 37 49 61 74 86 98 110 123 135 147 159 172 184 196 208 221 233 245	12 23 35 47 59 70 82 94 106 117 129 141 152 164 176 188 199 211 223 235	12 23 35 46 58 69 81 92 104 115 127 138 150 161 173 184 196 207 219 231	11 22 34 45 56 67 78 90 101 112 123 134 146 157 168 179 191 202 213 224	11 22 33 44 55 67 78 89 100 111 122 133 144 155 166 177 188 200 211 222	22 32 43 54 65 76 86 97 108 119 130 140 151 162 173 184 195 205 216	21 32 42 53 64 74 85 96 106 117 127 138 149 159 170 181 191 202 212	21 31 42 52 63 73 84 94 105 115 126 136 147 157 168 178 189 199 210	21 31 42 52 62 73 83 94 104 115 125 135 146 156 167 177 187 198 208	21 31 41 52 62 72 83 93 103 114 124 135 145 155 166 176 186 197 207
Table 8.3.18-2 Fir3e perimeter for sheltered fuels	Total Spread Distance (in chains)	10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 150	31 47 62 78 94 109 125 141 156 172 187 203 219 234 250 265 281 297 312 468	30 45 60 75 89 104 119 134 149 164 179 194 209 224 239 253 268 283 298 447	28 42 56 69 83 97 111 125 139 153 167 181 195 208 222 236 250 264 278 417	27 40 54 67 80 94 107 121 134 148 161 174 188 201 215 228 241 255 268 402	25 38 50 63 76 88 101 113 126 138 151 164 176 189 201 214 227 239 252 378	12 25 37 49 61 74 86 98 110 123 135 147 159 172 184 196 208 221 233 245 368	12 23 35 47 59 70 82 94 106 117 129 141 152 164 176 188 199 211 223 235 352	12 23 35 46 58 69 81 92 104 115 127 138 150 161 173 184 196 207 219 231 346	11 22 34 45 56 67 78 90 101 112 123 134 146 157 168 179 191 202 213 224 336	11 22 33 44 55 67 78 89 100 111 122 133 144 155 166 177 188 200 211 222 333	22 32 43 54 65 76 86 97 108 119 130 140 151 162 173 184 195 205 216 324	21 32 42 53 64 74 85 96 106 117 127 138 149 159 170 181 191 202 212 319	21 31 42 52 63 73 84 94 105 115 126 136 147 157 168 178 189 199 210 315	21 31 42 52 62 73 83 94 104 115 125 135 146 156 167 177 187 198 208 312	21 31 41 52 62 72 83 93 103 114 124 135 145 155 166 176 186 197 207 310

8.3.19 Fire Area and Perimeter for Open Fuels (0-1a, 0-1b)

		_	_	_		tive W							_ `		0-	
	Meter	1	3	5	6	8	9	11	12	14	15	18	21	24	27	30
EL	Open	1	2	3	4	5	6_	7	8	9	10	12	14	16	18	20
				1	Т	Т	В			n Acre			Т	T	Т	ı
	5	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	10	6	3	3	2	2	2	2	2	2	2	2	1	1	1	1
	15	13	8	6	6	5	5	4	4	4	4	3	3	3	3	3
	20	22	14	11	10	9	8	7	7	7	7	6	6	5	5	5
	25	35	22	17	15	14	13	12	11	11	10	9	9	8	8	7
ŝ	30	50	31	25	22	20	19	17	16	15	15	14	13	12	11	11
chains)	35	69	42	34	30	27	25	23	22	21	20	19	17	16	15	15
بق	40	90	55	44	39	35	33	30	29	27	26	24	23	21	20	19
S	45	114	70	56	50	45	42	38	36	35	33	31	29	27	25	24
(in	50	140	86	70	61	55	52	47	45	43	41	38	36	33	31	30
မ္ပ	55	170	104	84	74	67	63	57	54	52	49	46	43	40	38	36
Distance	60	202	124	100	88	79	74	67	64	62	59	54	51	47	45	43
St	65	237	146	117	104	93	87	79	75	72	69	64	60	55	53	50
									87			_				
pread	70	275	169	136	120	108	101	92		84	80	74	70	64	61	58
ĕ	75	316	194	156	138	124	116	105	100	96	92	85	80	74	70	67
Spi	80	359	221	178	157	141	132	120	114	110	105	97	91	84	80	76
	85	405	249	201	177	160	149	135	129	124	118	109	103	95	90	86
Total	90	454	279	225	199	179	167	151	145	139	133	122	116	106	101	96
Ĕ	95	506	311	251	222	199	187	169	161	155	148	136	129	118	113	107
	100	561	345	278	245	221	207	187	178	172	164	151	143	131	125	119
	150	1262	776	626	552	497	465	421	402	386	368	340	321	295	280	268
	200	2244	1379	1112	982	883	827	748	714	686	654	604	571	524	499	476
	250	3506	2154	1738	1534	1380	1292	1169	1116	1072	1023	944	892	818	779	744
	300	5049	3102	2503	2209	1987	1860	1683	1606	1544	1473	1359	1285	1178	1122	107
				ı			Fireli	ne Per		(in Ch	ains)					
	5	14	12	11	11	11	11	11	11	11	11	10	10	10	10	10
	10	27	23	22	22	22	22	21	21	21	21	21	21	21	21	21
	15	41	35	34	33	33	32	32	32	32	32	31	31	31	31	31
	20	54	47	45	44	43	43	43	42	42	42	42	42	41	41	41
	25	68	59	56	55	54	54	53	53	53	53	52	52	52	51	51
s)	30	81	70	67	66	65	65	64	64	63	63	63	62	62	62	62
us	35	95	82	79	77	76	75	75	74	74	74	73	73	72	72	72
chain			94									84				
ਹ	40	108	_	90	88	87	86	85	85	84	84		83	83	82	82
(in	45	122	106	101	99	98	97	96	95	95	95	94	94	93	93	92
	50	136	117	112	110	109	108	106	106	106	105	104	104	103	103	103
Distance	55	149	129	124	121	119	118	117	117	116	116	115	114	114	113	113
šťa	60	163	141	135	132	130	129	128	127	127	126	125	125	124	124	123
Ä	65	176	152	146	143	141	140	138	138	137	137	136	135	134	134	134
	70	190	164	157	154	152	151	149	148	148	147	146	146	145	144	144
pread	75	203	176	169	165	163	161	160	159	158	158	157	156	155	154	154
ğ	80	217	188	180	176	174	172	170	170	169	168	167	166	165	165	164
ഗ	85	230	199	191	187	185	183	181	180	179	179	177	177	176	175	175
ţ	90	244	211	202	198	195	194	192	191	190	189	188	187	186	185	185
Total	95	258	223	214	209	206	205	202	201	201	200	198	197	196	196	195
-	100	271	235	225	220	217	215	213	212	211	210	209	208	207	206	205
	150	407	352	337	330	326	323	319	318	317	315	313	312	310	309	308
	200	542	469	450	441	434	431	426	424	422	420	418	416	413	412	411
	250	678	587	562	551	543	538	532	530	528	525	522	520	517	515	514
																621
	300	937	895	834	805	755	735	704	692	672	665	648	637	630	625	62

8.4 FWI & FBP Calculations Worksheet

	Fo	reca	sted	We	ath	er:
--	----	------	------	----	-----	-----

	Yesterday's () Values		Today's () Daily Values				
STATION	FFMC DMC		DC	RnCd	RnCd/FFMC		/DMC	RnCd/DC		BUI	ISI	
Site Estimate												

Slo	quivale		Hourly FFMC/ISI Adjustments									
Fuel Typ	е	Slope	e, %	Slope Wind	Time	Temp	RH	Eff V 10m	VSpd EL	FFMC	ISI	BISI
					0800							
					0900							
					1000							
					1100							
					1200							
					1300							
FFM	C Slo	pe-Aspe	ct Adjus	tments	1400							
FFMC-fl	Sle	ope, %	Aspect	FFMC-SI	1500							
					1600							
					1700							
					1800							
					1900							
					2000							

Fuel Type	Spread	19	SI	Spr	ead	Fla	ame	Torching or	Spot Distance
& Modifier	Dir	Min	Max	Min	Max	Min	Max	Crowning?	No of Trees
									Tree Spp
									Tree DBH
									Cover Ht.
									Windspeed
									Spot Dist.

ALLOWABLE SCORCH HT.	SOURCE	FIRE SIZE AND SHAPE
Total Tree Height (feet)	Est. from Stand Inventory	OPEN FUELS
Ht. to Live Crown (feet)	Est. from Stand Inventory	Duration
Crown Ratio (dec. e.g7)	Est. from Stand Inventory	Spread Distance
Crown Height (feet)	Calculated; 1 - 2 or 1 X 3	Effective Windspeed
Allow. Crown Scorch (dec.)	Sensitivity to Mortality	Area
Allow. Crown Scorch (feet)	Calculated; 4 X 5	Perimeter
Allow. Scorch Height (feet)	Calculated 2 + 6	Length:Width

SMOKE & EFFECTS	Daily/Max	Hour:	Hour:	SHELTERED FUELS	
13. Surface Fuel Consump.				Duration	
14. Scorch Height				Spread Distance	
Surface Wind Direction				Effective Windspeed	
Transport Wind				Area	
Transport Wind Direction				Perimeter	
Mixing Height				Length:Width	